Abstract:Privacy-Preserving Federated Learning (PPFL) is a decentralized machine learning approach where multiple clients train a model collaboratively. PPFL preserves privacy and security of the client's data by not exchanging it. However, ensuring that data at each client is of high quality and ready for federated learning (FL) is a challenge due to restricted data access. In this paper, we introduce CADRE (Customizable Assurance of Data REadiness) for FL, a novel framework that allows users to define custom data readiness (DR) standards, metrics, rules, and remedies tailored to specific FL tasks. Our framework generates comprehensive DR reports based on the user-defined metrics, rules, and remedies to ensure datasets are optimally prepared for FL while preserving privacy. We demonstrate the framework's practical application by integrating it into an existing PPFL framework. We conducted experiments across six diverse datasets, addressing seven different DR issues. The results illustrate the framework's versatility and effectiveness in ensuring DR across various dimensions, including data quality, privacy, and fairness. This approach enhances the performance and reliability of FL models as well as utilizes valuable resources by identifying and addressing data-related issues before the training phase.
Abstract:AI Data Readiness Inspector (AIDRIN) is a framework to evaluate and improve data preparedness for AI applications. It addresses critical data readiness dimensions such as data quality, bias, fairness, and privacy. This paper details enhancements to AIDRIN by focusing on user interface improvements and integration with a privacy-preserving federated learning (PPFL) framework. By refining the UI and enabling smooth integration with decentralized AI pipelines, AIDRIN becomes more accessible and practical for users with varying technical expertise. Integrating with an existing PPFL framework ensures that data readiness and privacy are prioritized in federated learning environments. A case study involving a real-world dataset demonstrates AIDRIN's practical value in identifying data readiness issues that impact AI model performance.
Abstract:"Garbage In Garbage Out" is a universally agreed quote by computer scientists from various domains, including Artificial Intelligence (AI). As data is the fuel for AI, models trained on low-quality, biased data are often ineffective. Computer scientists who use AI invest a considerable amount of time and effort in preparing the data for AI. However, there are no standard methods or frameworks for assessing the "readiness" of data for AI. To provide a quantifiable assessment of the readiness of data for AI processes, we define parameters of AI data readiness and introduce AIDRIN (AI Data Readiness Inspector). AIDRIN is a framework covering a broad range of readiness dimensions available in the literature that aid in evaluating the readiness of data quantitatively and qualitatively. AIDRIN uses metrics in traditional data quality assessment such as completeness, outliers, and duplicates for data evaluation. Furthermore, AIDRIN uses metrics specific to assess data for AI, such as feature importance, feature correlations, class imbalance, fairness, privacy, and FAIR (Findability, Accessibility, Interoperability, and Reusability) principle compliance. AIDRIN provides visualizations and reports to assist data scientists in further investigating the readiness of data. The AIDRIN framework enhances the efficiency of the machine learning pipeline to make informed decisions on data readiness for AI applications.
Abstract:High-Performance Computing (HPC) systems excel in managing distributed workloads, and the growing interest in Artificial Intelligence (AI) has resulted in a surge in demand for faster methods of Machine Learning (ML) model training and inference. In the past, research on HPC I/O focused on optimizing the underlying storage system for modeling and simulation applications and checkpointing the results, causing writes to be the dominant I/O operation. These applications typically access large portions of the data written by simulations or experiments. ML workloads, in contrast, perform small I/O reads spread across a large number of random files. This shift of I/O access patterns poses several challenges to HPC storage systems. In this paper, we survey I/O in ML applications on HPC systems, and target literature within a 6-year time window from 2019 to 2024. We provide an overview of the common phases of ML, review available profilers and benchmarks, examine the I/O patterns encountered during ML training, explore I/O optimizations utilized in modern ML frameworks and proposed in recent literature, and lastly, present gaps requiring further R&D. We seek to summarize the common practices used in accessing data by ML applications and expose research gaps that could spawn further R&D.
Abstract:Data are the critical fuel for Artificial Intelligence (AI) models. Poor quality data produces inaccurate and ineffective AI models that may lead to incorrect or unsafe use. Checking for data readiness is a crucial step in improving data quality. Numerous R&D efforts have been spent on improving data quality. However, standardized metrics for evaluating data readiness for use in AI training are still evolving. In this study, we perform a comprehensive survey of metrics used for verifying AI's data readiness. This survey examines more than 120 papers that are published by ACM Digital Library, IEEE Xplore, other reputable journals, and articles published on the web by prominent AI experts. This survey aims to propose a taxonomy of data readiness for AI (DRAI) metrics for structured and unstructured datasets. We anticipate that this taxonomy can lead to new standards for DRAI metrics that would be used for enhancing the quality and accuracy of AI training and inference.