Abstract:The rapid evolution of Large Language Models (LLMs) has markedly expanded their application across diverse domains, transforming how complex problems are approached and solved. Initially conceived to predict subsequent words in texts, these models have transcended their original design to comprehend and respond to the underlying contexts of queries. Today, LLMs routinely perform tasks that once seemed formidable, such as writing essays, poems, stories, and even developing software code. As their capabilities continue to grow, so too do the expectations of their performance in even more sophisticated domains. Despite these advancements, LLMs still encounter significant challenges, particularly in scenarios requiring intricate decision-making, such as planning trips or choosing among multiple viable options. These tasks often demand a nuanced understanding of various outcomes and the ability to predict the consequences of different choices, which are currently outside the typical operational scope of LLMs. This paper proposes an innovative approach to bridge this capability gap. By enabling LLMs to request multiple potential options and their respective parameters from users, our system introduces a dynamic framework that integrates an optimization function within the decision-making process. This function is designed to analyze the provided options, simulate potential outcomes, and determine the most advantageous solution based on a set of predefined criteria. By harnessing this methodology, LLMs can offer tailored, optimal solutions to complex, multi-variable problems, significantly enhancing their utility and effectiveness in real-world applications. This approach not only expands the functional envelope of LLMs but also paves the way for more autonomous and intelligent systems capable of supporting sophisticated decision-making tasks.
Abstract:This paper introduces an innovative approach to road network generation through the utilization of a multi-modal Large Language Model (LLM). Our model is specifically designed to process aerial images of road layouts and produce detailed, navigable road networks within the input images. The core innovation of our system lies in the unique training methodology employed for the large language model to generate road networks as its output. This approach draws inspiration from the BLIP-2 architecture arXiv:2301.12597, leveraging pre-trained frozen image encoders and large language models to create a versatile multi-modal LLM. Our work also offers an alternative to the reasoning segmentation method proposed in the LISA paper arXiv:2308.00692. By training the large language model with our approach, the necessity for generating binary segmentation masks, as suggested in the LISA paper arXiv:2308.00692, is effectively eliminated. Experimental results underscore the efficacy of our multi-modal LLM in providing precise and valuable navigational guidance. This research represents a significant stride in bolstering autonomous navigation systems, especially in road network scenarios, where accurate guidance is of paramount importance.