Abstract:The adoption of Artificial Intelligence (AI) in the healthcare service industry presents numerous ethical challenges, yet current frameworks often fail to offer a comprehensive, empirical understanding of the multidimensional factors influencing ethical AI integration. Addressing this critical research gap, this study introduces the Multi-Dimensional Ethical AI Adoption Model (MEAAM), a novel theoretical framework that categorizes 13 critical ethical variables across four foundational dimensions of Ethical AI Fair AI, Responsible AI, Explainable AI, and Sustainable AI. These dimensions are further analyzed through three core ethical lenses: epistemic concerns (related to knowledge, transparency, and system trustworthiness), normative concerns (focused on justice, autonomy, dignity, and moral obligations), and overarching concerns (highlighting global, systemic, and long-term ethical implications). This study adopts a quantitative, cross-sectional research design using survey data collected from healthcare professionals and analyzed via Partial Least Squares Structural Equation Modeling (PLS-SEM). Employing PLS-SEM, this study empirically investigates the influence of these ethical constructs on two outcomes Operational AI Adoption and Systemic AI Adoption. Results indicate that normative concerns most significantly drive operational adoption decisions, while overarching concerns predominantly shape systemic adoption strategies and governance frameworks. Epistemic concerns play a facilitative role, enhancing the impact of ethical design principles on trust and transparency in AI systems. By validating the MEAAM framework, this research advances a holistic, actionable approach to ethical AI adoption in healthcare and provides critical insights for policymakers, technologists, and healthcare administrators striving to implement ethically grounded AI solutions.