Abstract:Class imbalance is a common challenge in machine learning and data mining, often leading to suboptimal performance in classifiers. While deep learning excels in feature extraction, its performance still deteriorates under imbalanced data. In this work, we propose a novel activation function, named OGAB, designed to alleviate class imbalance in deep learning classifiers. OGAB incorporates orthogonality and group-aware bias learning to enhance feature distinguishability in imbalanced scenarios without explicitly requiring label information. Our key insight is that activation functions can be used to introduce strong inductive biases that can address complex data challenges beyond traditional non-linearity. Our work demonstrates that orthogonal transformations can preserve information about minority classes by maintaining feature independence, thereby preventing the dominance of majority classes in the embedding space. Further, the proposed group-aware bias mechanism automatically identifies data clusters and adjusts embeddings to enhance class separability without the need for explicit supervision. Unlike existing approaches that address class imbalance through preprocessing data modifications or post-processing corrections, our proposed approach tackles class imbalance during the training phase at the embedding learning level, enabling direct integration with the learning process. We demonstrate the effectiveness of our solution on both real-world and synthetic imbalanced datasets, showing consistent performance improvements over both traditional and learnable activation functions.
Abstract:Despite extensive research spanning several decades, class imbalance is still considered a profound difficulty for both machine learning and deep learning models. While data oversampling is the foremost technique to address this issue, traditional sampling techniques are often decoupled from the training phase of the predictive model, resulting in suboptimal representations. To address this, we propose a novel learning framework that can generate synthetic data instances in a data-driven manner. The proposed framework formulates the oversampling process as a composition of discrete decision criteria, thereby enhancing the representation power of the model's learning process. Extensive experiments on the imbalanced classification task demonstrate the superiority of our framework over state-of-the-art algorithms.