Abstract:Text-based 3D motion generation aims to automatically synthesize diverse motions from natural-language descriptions to extend user creativity, whereas motion editing modifies an existing motion sequence in response to text while preserving its overall structure. Pose-code-based frameworks such as CoMo map quantifiable pose attributes into discrete pose codes that support interpretable motion control, but their frame-wise representation struggles to capture subtle temporal dynamics and high-frequency details, often degrading reconstruction fidelity and local controllability. To address this limitation, we introduce pose-guided residual refinement for motion (PGR$^2$M), a hybrid representation that augments interpretable pose codes with residual codes learned via residual vector quantization (RVQ). A pose-guided RVQ tokenizer decomposes motion into pose latents that encode coarse global structure and residual latents that model fine-grained temporal variations. Residual dropout further discourages over-reliance on residuals, preserving the semantic alignment and editability of the pose codes. On top of this tokenizer, a base Transformer autoregressively predicts pose codes from text, and a refine Transformer predicts residual codes conditioned on text, pose codes, and quantization stage. Experiments on HumanML3D and KIT-ML show that PGR$^2$M improves Fréchet inception distance and reconstruction metrics for both generation and editing compared with CoMo and recent diffusion- and tokenization-based baselines, while user studies confirm that it enables intuitive, structure-preserving motion edits.
Abstract:Recent progress in text-to-motion has advanced both 3D human motion generation and text-based motion control. Controllable motion generation (CoMo), which enables intuitive control, typically relies on pose code representations, but discrete pose codes alone cannot capture fine-grained motion details, limiting expressiveness. To overcome this, we propose a method that augments pose code-based latent representations with continuous motion features using residual vector quantization (RVQ). This design preserves the interpretability and manipulability of pose codes while effectively capturing subtle motion characteristics such as high-frequency details. Experiments on the HumanML3D dataset show that our model reduces Frechet inception distance (FID) from 0.041 to 0.015 and improves Top-1 R-Precision from 0.508 to 0.510. Qualitative analysis of pairwise direction similarity between pose codes further confirms the model's controllability for motion editing.
Abstract:Mining of formulaic alpha factors refers to the process of discovering and developing specific factors or indicators (referred to as alpha factors) for quantitative trading in stock market. To efficiently discover alpha factors in vast search space, reinforcement learning (RL) is commonly employed. This paper proposes a method to enhance existing alpha factor mining approaches by expanding a search space and utilizing pretrained formulaic alpha set as initial seed values to generate synergistic formulaic alpha. We employ information coefficient (IC) and rank information coefficient (Rank IC) as performance evaluation metrics for the model. Using CSI300 market data, we conducted real investment simulations and observed significant performance improvement compared to existing techniques.