

Abstract:This paper is about a machine learning approach based on the multilinear projection of an unknown function (or probability distribution) to be estimated towards a linear (or multilinear) dimensional space E'. The proposal transforms the problem of predicting the target of an observation x into a problem of determining a consensus among the k nearest neighbors of x's image within the dimensional space E'. The algorithms that concretize it allow both regression and binary classification. Implementations carried out using Scala/Spark and assessed on a dozen LIBSVM datasets have demonstrated improvements in prediction accuracies in comparison with other prediction algorithms implemented within Spark MLLib such as multilayer perceptrons, logistic regression classifiers and random forests.