Abstract:News recommender systems are increasingly driven by black-box models, offering little transparency for editorial decision-making. In this work, we introduce a transparent recommender system that uses fuzzy neural networks to learn human-readable rules from behavioral data for predicting article clicks. By extracting the rules at configurable thresholds, we can control rule complexity and thus, the level of interpretability. We evaluate our approach on two publicly available news datasets (i.e., MIND and EB-NeRD) and show that we can accurately predict click behavior compared to several established baselines, while learning human-readable rules. Furthermore, we show that the learned rules reveal news consumption patterns, enabling editors to align content curation goals with target audience behavior.
Abstract:As recommender systems become increasingly complex, transparency is essential to increase user trust, accountability, and regulatory compliance. Neuro-symbolic approaches that integrate symbolic reasoning with sub-symbolic learning offer a promising approach toward transparent and user-centric systems. In this work-in-progress, we investigate using fuzzy neural networks (FNNs) as a neuro-symbolic approach for recommendations that learn logic-based rules over predefined, human-readable atoms. Each rule corresponds to a fuzzy logic expression, making the recommender's decision process inherently transparent. In contrast to black-box machine learning methods, our approach reveals the reasoning behind a recommendation while maintaining competitive performance. We evaluate our method on a synthetic and MovieLens 1M datasets and compare it to state-of-the-art recommendation algorithms. Our results demonstrate that our approach accurately captures user behavior while providing a transparent decision-making process. Finally, the differentiable nature of this approach facilitates an integration with other neural models, enabling the development of hybrid, transparent recommender systems.