Abstract:Fairness in predictions is of direct importance in practice due to legal, ethical, and societal reasons. It is often achieved through counterfactual fairness, which ensures that the prediction for an individual is the same as that in a counterfactual world under a different sensitive attribute. However, achieving counterfactual fairness is challenging as counterfactuals are unobservable. In this paper, we develop a novel deep neural network called Generative Counterfactual Fairness Network (GCFN) for making predictions under counterfactual fairness. Specifically, we leverage a tailored generative adversarial network to directly learn the counterfactual distribution of the descendants of the sensitive attribute, which we then use to enforce fair predictions through a novel counterfactual mediator regularization. If the counterfactual distribution is learned sufficiently well, our method is mathematically guaranteed to ensure the notion of counterfactual fairness. Thereby, our GCFN addresses key shortcomings of existing baselines that are based on inferring latent variables, yet which (a) are potentially correlated with the sensitive attributes and thus lead to bias, and (b) have weak capability in constructing latent representations and thus low prediction performance. Across various experiments, our method achieves state-of-the-art performance. Using a real-world case study from recidivism prediction, we further demonstrate that our method makes meaningful predictions in practice.
Abstract:Hate speech on social media threatens the mental and physical well-being of individuals and is further responsible for real-world violence. An important driver behind the spread of hate speech and thus why hateful posts can go viral are reshares, yet little is known about why users reshare hate speech. In this paper, we present a comprehensive, causal analysis of the user attributes that make users reshare hate speech. However, causal inference from observational social media data is challenging, because such data likely suffer from selection bias, and there is further confounding due to differences in the vulnerability of users to hate speech. We develop a novel, three-step causal framework: (1) We debias the observational social media data by applying inverse propensity scoring. (2) We use the debiased propensity scores to model the latent vulnerability of users to hate speech as a latent embedding. (3) We model the causal effects of user attributes on users' probability of sharing hate speech, while controlling for the latent vulnerability of users to hate speech. Compared to existing baselines, a particular strength of our framework is that it models causal effects that are non-linear, yet still explainable. We find that users with fewer followers, fewer friends, and fewer posts share more hate speech. Younger accounts, in return, share less hate speech. Overall, understanding the factors that drive users to share hate speech is crucial for detecting individuals at risk of engaging in harmful behavior and for designing effective mitigation strategies.
Abstract:Relation extraction aims at inferring structured human knowledge from textual documents. State-of-the-art methods based on language models commonly have two limitations: (1) they require named entities to be either given as input or infer them, which introduces additional noise, and (2) they require human annotations of documents. As a remedy, we present a novel framework for in-context few-shot relation extraction via pre-trained language models. To the best of our knowledge, we are the first to reformulate the relation extraction task as a tailored in-context few-shot learning paradigm. Thereby, we achieve crucial benefits in that we eliminate the need for both named entity recognition and human annotation of documents. Unlike existing methods based on fine-tuning, our framework is flexible in that it can be easily updated for a new set of relations without re-training. We evaluate our framework using DocRED, the largest publicly available dataset for document-level relation extraction, and demonstrate that our framework achieves state-of-the-art performance. Finally, our framework allows us to identify missing annotations, and we thus show that our framework actually performs much better than the original labels from the development set of DocRED.
Abstract:Information in industry, research, and the public sector is widely stored as rendered documents (e.g., PDF files, scans). Hence, to enable downstream tasks, systems are needed that map rendered documents onto a structured hierarchical format. However, existing systems for this task are limited by heuristics and are not end-to-end trainable. In this work, we introduce the Document Structure Generator (DSG), a novel system for document parsing that is fully end-to-end trainable. DSG combines a deep neural network for parsing (i) entities in documents (e.g., figures, text blocks, headers, etc.) and (ii) relations that capture the sequence and nested structure between entities. Unlike existing systems that rely on heuristics, our DSG is trained end-to-end, making it effective and flexible for real-world applications. We further contribute a new, large-scale dataset called E-Periodica comprising real-world magazines with complex document structures for evaluation. Our results demonstrate that our DSG outperforms commercial OCR tools and, on top of that, achieves state-of-the-art performance. To the best of our knowledge, our DSG system is the first end-to-end trainable system for hierarchical document parsing.
Abstract:The term "generative AI" refers to computational techniques that are capable of generating seemingly new, meaningful content such as text, images, or audio from training data. The widespread diffusion of this technology with examples such as Dall-E 2, GPT-4, and Copilot is currently revolutionizing the way we work and communicate with each other. In this article, we provide a conceptualization of generative AI as an entity in socio-technical systems and provide examples of models, systems, and applications. Based on that, we introduce limitations of current generative AI and provide an agenda for Business & Information Systems Engineering (BISE) research. Different from previous works, we focus on generative AI in the context of information systems, and, to this end, we discuss several opportunities and challenges that are unique to the BISE community and make suggestions for impactful directions for BISE research.
Abstract:Problem Definition. Increasing costs of healthcare highlight the importance of effective disease prevention. However, decision models for allocating preventive care are lacking. Methodology/Results. In this paper, we develop a data-driven decision model for determining a cost-effective allocation of preventive treatments to patients at risk. Specifically, we combine counterfactual inference, machine learning, and optimization techniques to build a scalable decision model that can exploit high-dimensional medical data, such as the data found in modern electronic health records. Our decision model is evaluated based on electronic health records from 89,191 prediabetic patients. We compare the allocation of preventive treatments (metformin) prescribed by our data-driven decision model with that of current practice. We find that if our approach is applied to the U.S. population, it can yield annual savings of $1.1 billion. Finally, we analyze the cost-effectiveness under varying budget levels. Managerial Implications. Our work supports decision-making in health management, with the goal of achieving effective disease prevention at lower costs. Importantly, our decision model is generic and can thus be used for effective allocation of preventive care for other preventable diseases.
Abstract:The 2022 Russian invasion of Ukraine was accompanied by a large-scale, pro-Russian propaganda campaign on social media. However, the strategy behind the dissemination of propaganda has remained unclear, particularly how the online discourse was strategically shaped by the propagandists' community. Here, we analyze the strategy of the Twitter community using an inverse reinforcement learning (IRL) approach. Specifically, IRL allows us to model online behavior as a Markov decision process, where the goal is to infer the underlying reward structure that guides propagandists when interacting with users with a supporting or opposing stance toward the invasion. Thereby, we aim to understand empirically whether and how between-user interactions are strategically used to promote the proliferation of Russian propaganda. For this, we leverage a large-scale dataset with 349,455 posts with pro-Russian propaganda from 132,131 users. We show that bots and humans follow a different strategy: bots respond predominantly to pro-invasion messages, suggesting that they seek to drive virality; while messages indicating opposition primarily elicit responses from humans, suggesting that they tend to engage in critical discussions. To the best of our knowledge, this is the first study analyzing the strategy behind propaganda from the 2022 Russian invasion of Ukraine through the lens of IRL.
Abstract:Counterfactual inference aims to answer retrospective ''what if'' questions and thus belongs to the most fine-grained type of inference in Pearl's causality ladder. Existing methods for counterfactual inference with continuous outcomes aim at point identification and thus make strong and unnatural assumptions about the underlying structural causal model. In this paper, we relax these assumptions and aim at partial counterfactual identification of continuous outcomes, i.e., when the counterfactual query resides in an ignorance interval with informative bounds. We prove that, in general, the ignorance interval of the counterfactual queries has non-informative bounds, already when functions of structural causal models are continuously differentiable. As a remedy, we propose a novel sensitivity model called Curvature Sensitivity Model. This allows us to obtain informative bounds by bounding the curvature of level sets of the functions. We further show that existing point counterfactual identification methods are special cases of our Curvature Sensitivity Model when the bound of the curvature is set to zero. We then propose an implementation of our Curvature Sensitivity Model in the form of a novel deep generative model, which we call Augmented Pseudo-Invertible Decoder. Our implementation employs (i) residual normalizing flows with (ii) variational augmentations. We empirically demonstrate the effectiveness of our Augmented Pseudo-Invertible Decoder. To the best of our knowledge, ours is the first partial identification model for Markovian structural causal models with continuous outcomes.
Abstract:Decision-making in personalized medicine such as cancer therapy or critical care must often make choices for dosage combinations, i.e., multiple continuous treatments. Existing work for this task has modeled the effect of multiple treatments independently, while estimating the joint effect has received little attention but comes with non-trivial challenges. In this paper, we propose a novel method for reliable off-policy learning for dosage combinations. Our method proceeds along three steps: (1) We develop a tailored neural network that estimates the individualized dose-response function while accounting for the joint effect of multiple dependent dosages. (2) We estimate the generalized propensity score using conditional normalizing flows in order to detect regions with limited overlap in the shared covariate-treatment space. (3) We present a gradient-based learning algorithm to find the optimal, individualized dosage combinations. Here, we ensure reliable estimation of the policy value by avoiding regions with limited overlap. We finally perform an extensive evaluation of our method to show its effectiveness. To the best of our knowledge, ours is the first work to provide a method for reliable off-policy learning for optimal dosage combinations.
Abstract:Causal inference from observational data is crucial for many disciplines such as medicine and economics. However, sharp bounds for causal effects under relaxations of the unconfoundedness assumption (causal sensitivity analysis) are subject to ongoing research. So far, works with sharp bounds are restricted to fairly simple settings (e.g., a single binary treatment). In this paper, we propose a unified framework for causal sensitivity analysis under unobserved confounding in various settings. For this, we propose a flexible generalization of the marginal sensitivity model (MSM) and then derive sharp bounds for a large class of causal effects. This includes (conditional) average treatment effects, effects for mediation analysis and path analysis, and distributional effects. Furthermore, our sensitivity model is applicable to discrete, continuous, and time-varying treatments. It allows us to interpret the partial identification problem under unobserved confounding as a distribution shift in the latent confounders while evaluating the causal effect of interest. In the special case of a single binary treatment, our bounds for (conditional) average treatment effects coincide with recent optimality results for causal sensitivity analysis. Finally, we propose a scalable algorithm to estimate our sharp bounds from observational data.