Abstract:The global energy landscape is undergoing a profound transformation, often referred to as the energy transition, driven by the urgent need to mitigate climate change, reduce greenhouse gas emissions, and ensure sustainable energy supplies. However, the undoubted complexity of new investments in renewables, as well as the phase out of high CO2-emission energy sources, hampers the pace of the energy transition and raises doubts as to whether new renewable energy sources are capable of solely meeting the climate target goals. This highlights the need to investigate alternative pathways to accelerate the energy transition, by identifying human activity domains with higher/excessive energy demands. Two notable examples where there is room for improvement, in the sense of reducing energy consumption and consequently CO2 emissions, are residential energy consumption and road transport. This dissertation investigates the development of novel Deep Learning techniques to create tools which solve limitations in these two key energy domains. Reduction of residential energy consumption can be achieved by empowering end-users with the user of Non-Intrusive Load Monitoring, whereas optimization of EV charging with Deep Reinforcement Learning can tackle road transport decarbonization.
Abstract:The rapid growth of decentralized energy resources and especially Electric Vehicles (EV), that are expected to increase sharply over the next decade, will put further stress on existing power distribution networks, increasing the need for higher system reliability and flexibility. In an attempt to avoid unnecessary network investments and to increase the controllability over distribution networks, network operators develop demand response (DR) programs that incentivize end users to shift their consumption in return for financial or other benefits. Artificial intelligence (AI) methods are in the research forefront for residential load scheduling applications, mainly due to their high accuracy, high computational speed and lower dependence on the physical characteristics of the models under development. The aim of this work is to identify households' EV cost-reducing charging policy under a Time-of-Use tariff scheme, with the use of Deep Reinforcement Learning, and more specifically Deep Q-Networks (DQN). A novel end users flexibility potential reward is inferred from historical data analysis, where households with solar power generation have been used to train and test the designed algorithm. The suggested DQN EV charging policy can lead to more than 20% of savings in end users electricity bills.
Abstract:Power sector decarbonization plays a vital role in the upcoming energy transition towards a more sustainable future. Decentralized energy resources, such as Electric Vehicles (EV) and solar photovoltaic systems (PV), are continuously integrated in residential power systems, increasing the risk of bottlenecks in power distribution networks. This paper aims to address the challenge of domestic EV charging while prioritizing clean, solar energy consumption. Real Time-of-Use tariffs are treated as a price-based Demand Response (DR) mechanism that can incentivize end-users to optimally shift EV charging load in hours of high solar PV generation with the use of Deep Reinforcement Learning (DRL). Historical measurements from the Pecan Street dataset are analyzed to shape a flexibility potential reward to describe end-user charging preferences. Experimental results show that the proposed DQN EV optimal charging policy is able to reduce electricity bills by an average 11.5\% by achieving an average utilization of solar power 88.4