Abstract:Efficient text embedding is crucial for large-scale natural language processing (NLP) applications, where storage and computational efficiency are key concerns. In this paper, we explore how using binary representations (barcodes) instead of real-valued features can be used for NLP embeddings derived from machine learning models such as BERT. Thresholding is a common method for converting continuous embeddings into binary representations, often using a fixed threshold across all features. We propose a Coordinate Search-based optimization framework that instead identifies the optimal threshold for each feature, demonstrating that feature-specific thresholds lead to improved performance in binary encoding. This ensures that the binary representations are both accurate and efficient, enhancing performance across various features. Our optimal barcode representations have shown promising results in various NLP applications, demonstrating their potential to transform text representation. We conducted extensive experiments and statistical tests on different NLP tasks and datasets to evaluate our approach and compare it to other thresholding methods. Binary embeddings generated using using optimal thresholds found by our method outperform traditional binarization methods in accuracy. This technique for generating binary representations is versatile and can be applied to any features, not just limited to NLP embeddings, making it useful for a wide range of domains in machine learning applications.
Abstract:In this article, we propose a novel approach for plant hierarchical taxonomy classification by posing the problem as an open class problem. It is observed that existing methods for medicinal plant classification often fail to perform hierarchical classification and accurately identifying unknown species, limiting their effectiveness in comprehensive plant taxonomy classification. Thus we address the problem of unknown species classification by assigning it best hierarchical labels. We propose a novel method, which integrates DenseNet121, Multi-Scale Self-Attention (MSSA) and cascaded classifiers for hierarchical classification. The approach systematically categorizes medicinal plants at multiple taxonomic levels, from phylum to species, ensuring detailed and precise classification. Using multi scale space attention, the model captures both local and global contextual information from the images, improving the distinction between similar species and the identification of new ones. It uses attention scores to focus on important features across multiple scales. The proposed method provides a solution for hierarchical classification, showcasing superior performance in identifying both known and unknown species. The model was tested on two state-of-art datasets with and without background artifacts and so that it can be deployed to tackle real word application. We used unknown species for testing our model. For unknown species the model achieved an average accuracy of 83.36%, 78.30%, 60.34% and 43.32% for predicting correct phylum, class, order and family respectively. Our proposed model size is almost four times less than the existing state of the art methods making it easily deploy able in real world application.