Abstract:In recent years, large language models have demonstrated remarkable performance across diverse tasks. However, their task effectiveness is heavily dependent on the prompting strategy used to elicit output, which can vary widely in both performance and token usage. While task performance is often used to determine prompting strategy success, we argue that efficiency--balancing performance and token usage--can be a more practical metric for real-world utility. To enable this, we propose Big-$O_{tok}$, a theoretical framework for describing the token usage growth of prompting strategies, and analyze Token Cost, an empirical measure of tokens per performance. We apply these to several common prompting strategies and find that increased token usage leads to drastically diminishing performance returns. Our results validate the Big-$O_{tok}$ analyses and reinforce the need for efficiency-aware evaluations.
Abstract:Large language model (LLM) agents show promise in an increasing number of domains. In many proposed applications, it is expected that the agent reasons over accumulated experience presented in an input prompt. We propose the OEDD (Operationalize Experience Despite Distraction) corpus, a human-annotator-validated body of scenarios with pre-scripted agent histories where the agent must make a decision based on disparate experiential information in the presence of a distractor. We evaluate three state-of-the-art LLMs (GPT-3.5 Turbo, GPT-4o, and Gemini 1.5 Pro) using a minimal chain-of-thought prompting strategy and observe that when (1) the input context contains over 1,615 tokens of historical interactions, (2) a crucially decision-informing premise is the rightful conclusion over two disparate environment premises, and (3) a trivial, but distracting red herring fact follows, all LLMs perform worse than random choice at selecting the better of two actions. Our code and test corpus are publicly available at: https://github.com/sonnygeorge/OEDD .