Abstract:Incidental detection and quantification of coronary calcium in CT scans could lead to the early introduction of lifesaving clinical interventions. However, over-reporting could negatively affect patient wellbeing and unnecessarily burden the medical system. Therefore, careful considerations should be taken when automatically reporting coronary calcium scores. A cluster-based conditional conformal prediction framework is proposed to provide score intervals with calibrated coverage from trained segmentation networks without retraining. The proposed method was tuned and used to calibrate predictive intervals for 3D UNet models (deterministic, MCDropout and deep ensemble) reaching similar coverage with better triage metrics compared to conventional conformal prediction. Meaningful predictive intervals of calcium scores could help triage patients according to the confidence of their risk category prediction.
Abstract:Style transfer in DCE-MRI is a challenging task due to large variations in contrast enhancements across different tissues and time. Current unsupervised methods fail due to the wide variety of contrast enhancement and motion between the images in the series. We propose a new method that combines autoencoders to disentangle content and style with convolutional LSTMs to model predicted latent spaces along time and adaptive convolutions to tackle the localised nature of contrast enhancement. To evaluate our method, we propose a new metric that takes into account the contrast enhancement. Qualitative and quantitative analyses show that the proposed method outperforms the state of the art on two different datasets.
Abstract:Image segmentation and registration are said to be challenging when applied to dynamic contrast enhanced MRI sequences (DCE-MRI). The contrast agent causes rapid changes in intensity in the region of interest and elsewhere, which can lead to false positive predictions for segmentation tasks and confound the image registration similarity metric. While it is widely assumed that contrast changes increase the difficulty of these tasks, to our knowledge no work has quantified these effects. In this paper we examine the effect of training with different ratios of contrast enhanced (CE) data on two popular tasks: segmentation with nnU-Net and Mask R-CNN and registration using VoxelMorph and VTN. We experimented further by strategically using the available datasets through pretraining and fine tuning with different splits of data. We found that to create a generalisable model, pretraining with CE data and fine tuning with non-CE data gave the best result. This interesting find could be expanded to other deep learning based image processing tasks with DCE-MRI and provide significant improvements to the models performance.