Abstract:Large Language Models (LLMs) are increasingly deployed in business-critical domains such as finance, education, healthcare, and customer support, where users expect consistent and reliable recommendations. Yet LLMs often exhibit variability when prompts are phrased with minor differences, even when semantically equivalent. Such inconsistency undermines trust, complicates compliance, and disrupts user experience. While personalization is desirable in certain contexts, many enterprise scenarios-such as HR onboarding, customer support, or policy disclosure-require invariant information delivery regardless of phrasing or prior conversational history. Existing approaches, including retrieval-augmented generation (RAG) and temperature tuning, improve factuality or reduce stochasticity but cannot guarantee stability across equivalent prompts. In this paper, we propose a reinforcement learning framework based on Group Relative Policy Optimization (GRPO) to directly optimize for consistency. Unlike prior applications of GRPO, which have been limited to reasoning and code generation, we adapt GRPO to enforce stability of information content across groups of semantically equivalent prompts. We introduce entropy-based helpfulness and stability rewards, treating prompt variants as groups and resetting conversational context to isolate phrasing effects. Experiments on investment and job recommendation tasks show that our GRPO-trained model reduces variability more effectively than fine-tuning or decoding-based baselines. To our knowledge, this is a novel application of GRPO for aligning LLMs toward information consistency, reframing variability not as an acceptable feature of generative diversity but as a correctable flaw in enterprise deployments.
Abstract:We investigate the existence and persistence of a specific type of gender bias in some of the popular LLMs and contribute a new benchmark dataset, RealWorldQuestioning (released on HuggingFace ), developed from real-world questions across four key domains in business and health contexts: education, jobs, personal financial management, and general health. We define and study entropy bias, which we define as a discrepancy in the amount of information generated by an LLM in response to real questions users have asked. We tested this using four different LLMs and evaluated the generated responses both qualitatively and quantitatively by using ChatGPT-4o (as "LLM-as-judge"). Our analyses (metric-based comparisons and "LLM-as-judge" evaluation) suggest that there is no significant bias in LLM responses for men and women at a category level. However, at a finer granularity (the individual question level), there are substantial differences in LLM responses for men and women in the majority of cases, which "cancel" each other out often due to some responses being better for males and vice versa. This is still a concern since typical users of these tools often ask a specific question (only) as opposed to several varied ones in each of these common yet important areas of life. We suggest a simple debiasing approach that iteratively merges the responses for the two genders to produce a final result. Our approach demonstrates that a simple, prompt-based debiasing strategy can effectively debias LLM outputs, thus producing responses with higher information content than both gendered variants in 78% of the cases, and consistently achieving a balanced integration in the remaining cases.
Abstract:Knowing that the generative capabilities of large language models (LLM) are sometimes hampered by tendencies to hallucinate or create non-factual responses, researchers have increasingly focused on methods to ground generated outputs in factual data. Retrieval Augmented Generation (RAG) has emerged as a key approach for integrating knowledge from data sources outside of the LLM's training set, including proprietary and up-to-date information. While many research papers explore various RAG strategies, their true efficacy is tested in real-world applications with actual data. The journey from conceiving an idea to actualizing it in the real world is a lengthy process. We present insights from the development and field-testing of a pilot project that integrates LLMs with RAG for information retrieval. Additionally, we examine the impacts on the information value chain, encompassing people, processes, and technology. Our aim is to identify the opportunities and challenges of implementing this emerging technology, particularly within the context of behavioral research in the information systems (IS) field. The contributions of this work include the development of best practices and recommendations for adopting this promising technology while ensuring compliance with industry regulations through a proposed AI governance model.