Abstract:In this work, we introduce RadarTrack, an innovative ego-speed estimation framework utilizing a single-chip millimeter-wave (mmWave) radar to deliver robust speed estimation for mobile platforms. Unlike previous methods that depend on cross-modal learning and computationally intensive Deep Neural Networks (DNNs), RadarTrack utilizes a novel phase-based speed estimation approach. This method effectively overcomes the limitations of conventional ego-speed estimation approaches which rely on doppler measurements and static surrondings. RadarTrack is designed for low-latency operation on embedded platforms, making it suitable for real-time applications where speed and efficiency are critical. Our key contributions include the introduction of a novel phase-based speed estimation technique solely based on signal processing and the implementation of a real-time prototype validated through extensive real-world evaluations. By providing a reliable and lightweight solution for ego-speed estimation, RadarTrack holds significant potential for a wide range of applications, including micro-robotics, augmented reality, and autonomous navigation.
Abstract:Deep learning and computer vision methods are nowadays predominantly used in the field of ophthalmology. In this paper, we present an attention-aided DenseNet-121 for classifying normal and glaucomatous eyes from fundus images. It involves the convolutional block attention module to highlight relevant spatial and channel features extracted by DenseNet-121. The channel recalibration module further enriches the features by utilizing edge information along with the statistical features of the spatial dimension. For the experiments, two standard datasets, namely RIM-ONE and ACRIMA, have been used. Our method has shown superior results than state-of-the-art models. An ablation study has also been conducted to show the effectiveness of each of the components. The code of the proposed work is available at: https://github.com/Soham2004GitHub/DADGC.
Abstract:Precise ego-motion measurement is crucial for various applications, including robotics, augmented reality, and autonomous navigation. In this poster, we propose mmPhase, an odometry framework based on single-chip millimetre-wave (mmWave) radar for robust ego-motion estimation in mobile platforms without requiring additional modalities like the visual, wheel, or inertial odometry. mmPhase leverages a phase-based velocity estimation approach to overcome the limitations of conventional doppler resolution. For real-world evaluations of mmPhase we have developed an ego-vehicle prototype. Compared to the state-of-the-art baselines, mmPhase shows superior performance in ego-velocity estimation.