Abstract:We formulate the fundamental laws governing learning dynamics, namely the conservation law and the decrease of total entropy. Within this framework, we introduce an entropy-based lifelong ensemble learning method. We evaluate its effectiveness by constructing an immunization mechanism to defend against transfer-based adversarial attacks on the CIFAR-10 dataset. Compared with a naive ensemble formed by simply averaging models specialized on clean and adversarial samples, the resulting logifold achieves higher accuracy in most test cases, with particularly large gains under strong perturbations.