Abstract:Aircraft recognition in synthetic aperture radar (SAR) imagery is a fundamental mission in both military and civilian applications. Recently deep learning (DL) has emerged a dominant paradigm for its explosive performance on extracting discriminative features. However, current classification algorithms focus primarily on learning decision hyperplane without enough comprehension on aircraft structural knowledge. Inspired by the fined aircraft annotation methods for optical remote sensing images (RSI), we first introduce a structure-based SAR aircraft annotations approach to provide structural and compositional supplement information. On this basis, we propose a multi-task structure guided learning (MTSGL) network for robust and interpretable SAR aircraft recognition. Besides the classification task, MTSGL includes a structural semantic awareness (SSA) module and a structural consistency regularization (SCR) module. The SSA is designed to capture structure semantic information, which is conducive to gain human-like comprehension of aircraft knowledge. The SCR helps maintain the geometric consistency between the aircraft structure in SAR imagery and the proposed annotation. In this process, the structural attribute can be disentangled in a geometrically meaningful manner. In conclusion, the MTSGL is presented with the expert-level aircraft prior knowledge and structure guided learning paradigm, aiming to comprehend the aircraft concept in a way analogous to the human cognitive process. Extensive experiments are conducted on a self-constructed multi-task SAR aircraft recognition dataset (MT-SARD) and the effective results illustrate the superiority of robustness and interpretation ability of the proposed MTSGL.
Abstract:Deep learning methods based synthetic aperture radar (SAR) image target recognition tasks have been widely studied currently. The existing deep methods are insufficient to perceive and mine the scattering information of SAR images, resulting in performance bottlenecks and poor robustness of the algorithms. To this end, this paper proposes a novel bottom-up scattering information perception network for more interpretable target recognition by constructing the proprietary interpretation network for SAR images. Firstly, the localized scattering perceptron is proposed to replace the backbone feature extractor based on CNN networks to deeply mine the underlying scattering information of the target. Then, an unsupervised scattering part feature extraction model is proposed to robustly characterize the target scattering part information and provide fine-grained target representation. Finally, by aggregating the knowledge of target parts to form the complete target description, the interpretability and discriminative ability of the model is improved. We perform experiments on the FAST-Vehicle dataset and the SAR-ACD dataset to validate the performance of the proposed method.