Abstract:This paper presents an innovative Transformer-based deep learning strategy for optimizing the placement of sensors aiming at structural health monitoring of semiconductor probe cards. Failures in probe cards, including substrate cracks and loosened screws, would critically affect semiconductor manufacturing yield and reliability. Some failure modes could be detected by equipping a probe card with adequate sensors. Frequency response functions from simulated failure scenarios are adopted within a finite element model of a probe card. A comprehensive dataset, enriched by physics-informed scenario expansion and physics-aware statistical data augmentation, is exploited to train a hybrid Convolutional Neural Network and Transformer model. The model achieves high accuracy (99.83%) in classifying the probe card health states (baseline, loose screw, crack) and an excellent crack detection recall (99.73%). Model robustness is confirmed through a rigorous framework of 3 repetitions of 10-fold stratified cross-validation. The attention mechanism also pinpoints critical sensor locations: an analysis of the attention weights offers actionable insights for designing efficient, cost-effective monitoring systems by optimizing sensor configurations. This research highlights the capability of attention-based deep learning to advance proactive maintenance, enhancing operational reliability and yield in semiconductor manufacturing.