Abstract:In this paper we describe Ninja Codes, neurally-generated fiducial markers that can be made to naturally blend into various real-world environments. An encoder network converts arbitrary images into Ninja Codes by applying visually modest alterations; the resulting codes, printed and pasted onto surfaces, can provide stealthy 6-DoF location tracking for a wide range of applications including augmented reality, robotics, motion-based user interfaces, etc. Ninja Codes can be printed using off-the-shelf color printers on regular printing paper, and can be detected using any device equipped with a modern RGB camera and capable of running inference. Using an end-to-end process inspired by prior work on deep steganography, we jointly train a series of network modules that perform the creation and detection of Ninja Codes. Through experiments, we demonstrate Ninja Codes' ability to provide reliable location tracking under common indoor lighting conditions, while successfully concealing themselves within diverse environmental textures. We expect Ninja Codes to offer particular value in scenarios where the conspicuous appearances of conventional fiducial markers make them undesirable for aesthetic and other reasons.




Abstract:Despeckling is a crucial noise reduction task in improving the quality of synthetic aperture radar (SAR) images. Directly obtaining noise-free SAR images is a challenging task that has hindered the development of accurate despeckling algorithms. The advent of deep learning has facilitated the study of denoising models that learn from only noisy SAR images. However, existing methods deal solely with single-polarization images and cannot handle the multi-polarization images captured by modern satellites. In this work, we present an extension of the existing model for generating single-polarization SAR images to handle multi-polarization SAR images. Specifically, we propose a novel self-supervised despeckling approach called channel masking, which exploits the relationship between polarizations. Additionally, we utilize a spatial masking method that addresses pixel-to-pixel correlations to further enhance the performance of our approach. By effectively incorporating multiple polarization information, our method surpasses current state-of-the-art methods in quantitative evaluation in both synthetic and real-world scenarios.