Abstract:Cometary activity is a compelling subject of study, with thermophysical models playing a pivotal role in its understanding. However, traditional numerical solutions for small body thermophysical models are computationally intensive, posing challenges for investigations requiring high-resolution or repetitive modeling. To address this limitation, we employed a machine learning approach to develop ThermoONet - a neural network designed to predict the temperature and water ice sublimation flux of comets. Performance evaluations indicate that ThermoONet achieves a low average error in subsurface temperature of approximately 2% relative to the numerical simulation, while reducing computational time by nearly six orders of magnitude. We applied ThermoONet to model the water activity of comets 67P/Churyumov-Gerasimenko and 21P/Giacobini-Zinner. By successfully fitting the water production rate curves of these comets, as obtained by the Rosetta mission and the SOHO telescope, respectively, we demonstrate the network's effectiveness and efficiency. Furthermore, when combined with a global optimization algorithm, ThermoONet proves capable of retrieving the physical properties of target bodies.
Abstract:Surface temperature distribution is crucial for thermal property-based studies about irregular asteroids in our Solar System. While direct numerical simulations could model surface temperatures with high fidelity, they often take a significant amount of computational time, especially for problems where temperature distributions are required to be repeatedly calculated. To this end, deep operator neural network (DeepONet) provides a powerful tool due to its high computational efficiency and generalization ability. In this work, we applied DeepONet to the modelling of asteroid surface temperatures. Results show that the trained network is able to predict temperature with an accuracy of ~1% on average, while the computational cost is five orders of magnitude lower, hence enabling thermal property analysis in a multidimensional parameter space. As a preliminary application, we analyzed the orbital evolution of asteroids through direct N-body simulations embedded with instantaneous Yarkovsky effect inferred by DeepONet-based thermophysical modelling.Taking asteroids (3200) Phaethon and (89433) 2001 WM41 as examples, we show the efficacy and efficiency of our AI-based approach.