Abstract:Incomplete satellite-based precipitation presents a significant challenge in global monitoring. For example, the Global Satellite Mapping of Precipitation (GSMaP) from JAXA suffers from substantial missing regions due to the orbital characteristics of satellites that have microwave sensors, and its current interpolation methods often result in spatial discontinuities. In this study, we formulate the completion of the precipitation map as a video inpainting task and propose a machine learning approach based on conditional diffusion models. Our method employs a 3D U-Net with a 3D condition encoder to reconstruct complete precipitation maps by leveraging spatio-temporal information from infrared images, latitude-longitude grids, and physical time inputs. Training was carried out on ERA5 hourly precipitation data from 2020 to 2023. We generated a pseudo-GSMaP dataset by randomly applying GSMaP masks to ERA maps. Performance was evaluated for the calendar year 2024, and our approach produces more spatio-temporally consistent inpainted precipitation maps compared to conventional methods. These results indicate the potential to improve global precipitation monitoring using the conditional diffusion models.
Abstract:High-resolution (HR) precipitation prediction is essential for reducing damage from stationary and localized heavy rainfall; however, HR precipitation forecasts using process-driven numerical weather prediction models remains challenging. This study proposes using Wasserstein Generative Adversarial Network (WGAN) to perform precipitation downscaling with an optimal transport cost. In contrast to a conventional neural network trained with mean squared error, the WGAN generated visually realistic precipitation fields with fine-scale structures even though the WGAN exhibited slightly lower performance on conventional evaluation metrics. The learned critic of WGAN correlated well with human perceptual realism. Case-based analysis revealed that large discrepancies in critic scores can help identify both unrealistic WGAN outputs and potential artifacts in the reference data. These findings suggest that the WGAN framework not only improves perceptual realism in precipitation downscaling but also offers a new perspective for evaluating and quality-controlling precipitation datasets.
Abstract:Artificial intelligence (AI)-based weather prediction research is growing rapidly and has shown to be competitive with the advanced dynamic numerical weather prediction models. However, research combining AI-based weather prediction models with data assimilation remains limited partially because long-term sequential data assimilation cycles are required to evaluate data assimilation systems. This study proposes using ensemble data assimilation for diagnosing AI-based weather prediction models, and marked the first successful implementation of ensemble Kalman filter with AI-based weather prediction models. Our experiments with an AI-based model ClimaX demonstrated that the ensemble data assimilation cycled stably for the AI-based weather prediction model using covariance inflation and localization techniques within the ensemble Kalman filter. While ClimaX showed some limitations in capturing flow-dependent error covariance compared to dynamical models, the AI-based ensemble forecasts provided reasonable and beneficial error covariance in sparsely observed regions. In addition, ensemble data assimilation revealed that error growth based on ensemble ClimaX predictions was weaker than that of dynamical NWP models, leading to higher inflation factors. A series of experiments demonstrated that ensemble data assimilation can be used to diagnose properties of AI weather prediction models such as physical consistency and accurate error growth representation.
Abstract:Artificial intelligence (AI)-based weather prediction research is growing rapidly and has shown to be competitive with the advanced dynamic numerical weather prediction models. However, research combining AI-based weather prediction models with data assimilation remains limited partially because long-term sequential data assimilation cycles are required to evaluate data assimilation systems. This study explores integrating the local ensemble transform Kalman filter (LETKF) with an AI-based weather prediction model ClimaX. Our experiments demonstrated that the ensemble data assimilation cycled stably for the AI-based weather prediction model using covariance inflation and localization techniques inside the LETKF. While ClimaX showed some limitations in capturing flow-dependent error covariance compared to dynamical models, the AI-based ensemble forecasts provided reasonable and beneficial error covariance in sparsely observed regions. These findings highlight the potential of AI models in weather forecasting and the importance of physical consistency and accurate error growth representation in improving ensemble data assimilation.