Abstract:Large Language Models (LLMs) have demonstrated impressive performance on multiple-choice question answering (MCQA) benchmarks, yet they remain highly vulnerable to minor input perturbations. In this paper, we introduce and evaluate Token Constraint Decoding (TCD). This simple yet effective inference-time algorithm enforces alignment between token-level predictions to enhance robustness in noisy settings. Through extensive experiments on CommonsenseQA, MMLU, and MMLU-Pro, we show that TCD, especially when paired with prompt engineering (PE) fixes, significantly restores performance degraded by input noise, yielding up to +39\% absolute gains for weaker models like Gemma3 1B. Penalty sweep analyses further reveal that TCD implicitly regularizes overconfident outputs, with different models requiring distinct penalty schedules to maximize resilience. Our findings establish TCD as a practical, model-agnostic approach for improving reasoning stability under real-world imperfections and pave the way for more reliable deployment of LLMs in safety-critical or user-facing applications.
Abstract:Machine learning has become a very popular approach for cybernetics systems, and it has always been considered important research in the Computational Intelligence area. Nevertheless, when it comes to smart machines, it is not just about the methodologies. We need to consider systems and cybernetics as well as include human in the loop. The purpose of this article is as follows: (1) To integrate the open source Facebook AI Research (FAIR) DarkForest program of Facebook with Item Response Theory (IRT), to the new open learning system, namely, DDF learning system; (2) To integrate DDF Go with Robot namely Robotic DDF Go system; (3) To invite the professional Go players to attend the activity to play Go games on site with a smart machine. The research team will apply this technology to education, such as, playing games to enhance the children concentration on learning mathematics, languages, and other topics. With the detected brainwaves, the robot will be able to speak some words that are very much to the point for the students and to assist the teachers in classroom in the future.