Abstract:Customer Identity and Access Management (CIAM) systems play a pivotal role in securing enterprise infrastructures. However, the complexity of implementing these systems requires careful architectural planning to ensure positive Return on Investment (RoI) and avoid costly delays. The proliferation of Active Persistent cyber threats, coupled with advancements in AI, cloud computing, and geographically distributed customer populations, necessitates a paradigm shift towards adaptive and zero-trust security frameworks. This paper introduces the Combined Hyper-Extensible Extremely-Secured Zero-Trust (CHEZ) CIAM-PAM architecture, designed specifically for large-scale enterprises. The CHEZ PL CIAM-PAM framework addresses critical security gaps by integrating federated identity management (private and public identities), password-less authentication, adaptive multi-factor authentication (MFA), microservice-based PEP (Policy Entitlement Point), multi-layer RBAC (Role Based Access Control) and multi-level trust systems. This future-proof design also includes end-to-end data encryption, and seamless integration with state-of-the-art AI-based threat detection systems, while ensuring compliance with stringent regulatory standards.
Abstract:With a major focus on its history, difficulties, and promise, this research paper provides a thorough analysis of the chatbot technology environment as it exists today. It provides a very flexible chatbot system that makes use of reinforcement learning strategies to improve user interactions and conversational experiences. Additionally, this system makes use of sentiment analysis and natural language processing to determine user moods. The chatbot is a valuable tool across many fields thanks to its amazing characteristics, which include voice-to-voice conversation, multilingual support [12], advising skills, offline functioning, and quick help features. The complexity of chatbot technology development is also explored in this study, along with the causes that have propelled these developments and their far-reaching effects on a range of sectors. According to the study, three crucial elements are crucial: 1) Even without explicit profile information, the chatbot system is built to adeptly understand unique consumer preferences and fluctuating satisfaction levels. With the use of this capacity, user interactions are made to meet their wants and preferences. 2) Using a complex method that interlaces Multiview voice chat information, the chatbot may precisely simulate users' actual experiences. This aids in developing more genuine and interesting discussions. 3) The study presents an original method for improving the black-box deep learning models' capacity for prediction. This improvement is made possible by introducing dynamic satisfaction measurements that are theory-driven, which leads to more precise forecasts of consumer reaction.