Abstract:Large language models (LLMs) are increasingly paired with activation-based monitoring to detect and prevent harmful behaviors that may not be apparent at the surface-text level. However, existing activation safety approaches, trained on broad misuse datasets, struggle with poor precision, limited flexibility, and lack of interpretability. This paper introduces a new paradigm: rule-based activation safety, inspired by rule-sharing practices in cybersecurity. We propose modeling activations as cognitive elements (CEs), fine-grained, interpretable factors such as ''making a threat'' and ''payment processing'', that can be composed to capture nuanced, domain-specific behaviors with higher precision. Building on this representation, we present a practical framework that defines predicate rules over CEs and detects violations in real time. This enables practitioners to configure and update safeguards without retraining models or detectors, while supporting transparency and auditability. Our results show that compositional rule-based activation safety improves precision, supports domain customization, and lays the groundwork for scalable, interpretable, and auditable AI governance. We will release GAVEL as an open-source framework and provide an accompanying automated rule creation tool.
Abstract:Romance-baiting scams have become a major source of financial and emotional harm worldwide. These operations are run by organized crime syndicates that traffic thousands of people into forced labor, requiring them to build emotional intimacy with victims over weeks of text conversations before pressuring them into fraudulent cryptocurrency investments. Because the scams are inherently text-based, they raise urgent questions about the role of Large Language Models (LLMs) in both current and future automation. We investigate this intersection by interviewing 145 insiders and 5 scam victims, performing a blinded long-term conversation study comparing LLM scam agents to human operators, and executing an evaluation of commercial safety filters. Our findings show that LLMs are already widely deployed within scam organizations, with 87% of scam labor consisting of systematized conversational tasks readily susceptible to automation. In a week-long study, an LLM agent not only elicited greater trust from study participants (p=0.007) but also achieved higher compliance with requests than human operators (46% vs. 18% for humans). Meanwhile, popular safety filters detected 0.0% of romance baiting dialogues. Together, these results suggest that romance-baiting scams may be amenable to full-scale LLM automation, while existing defenses remain inadequate to prevent their expansion.