Abstract:This paper addresses the problem of joint detection and recounting of abnormal events in videos. Recounting of abnormal events, i.e., explaining why they are judged to be abnormal, is an unexplored but critical task in video surveillance, because it helps human observers quickly judge if they are false alarms or not. To describe the events in the human-understandable form for event recounting, learning generic knowledge about visual concepts (e.g., object and action) is crucial. Although convolutional neural networks (CNNs) have achieved promising results in learning such concepts, it remains an open question as to how to effectively use CNNs for abnormal event detection, mainly due to the environment-dependent nature of the anomaly detection. In this paper, we tackle this problem by integrating a generic CNN model and environment-dependent anomaly detectors. Our approach first learns CNN with multiple visual tasks to exploit semantic information that is useful for detecting and recounting abnormal events. By appropriately plugging the model into anomaly detectors, we can detect and recount abnormal events while taking advantage of the discriminative power of CNNs. Our approach outperforms the state-of-the-art on Avenue and UCSD Ped2 benchmarks for abnormal event detection and also produces promising results of abnormal event recounting.
Abstract:Region-based image retrieval (RBIR) technique is revisited. In early attempts at RBIR in the late 90s, researchers found many ways to specify region-based queries and spatial relationships; however, the way to characterize the regions, such as by using color histograms, were very poor at that time. Here, we revisit RBIR by incorporating semantic specification of objects and intuitive specification of spatial relationships. Our contributions are the following. First, to support multiple aspects of semantic object specification (category, instance, and attribute), we propose a multitask CNN feature that allows us to use deep learning technique and to jointly handle multi-aspect object specification. Second, to help users specify spatial relationships among objects in an intuitive way, we propose recommendation techniques of spatial relationships. In particular, by mining the search results, a system can recommend feasible spatial relationships among the objects. The system also can recommend likely spatial relationships by assigned object category names based on language prior. Moreover, object-level inverted indexing supports very fast shortlist generation, and re-ranking based on spatial constraints provides users with instant RBIR experiences.
Abstract:Deep neural networks have recently achieved significant progress. Sharing trained models of these deep neural networks is very important in the rapid progress of researching or developing deep neural network systems. At the same time, it is necessary to protect the rights of shared trained models. To this end, we propose to use a digital watermarking technology to protect intellectual property or detect intellectual property infringement of trained models. Firstly, we formulate a new problem: embedding watermarks into deep neural networks. We also define requirements, embedding situations, and attack types for watermarking to deep neural networks. Secondly, we propose a general framework to embed a watermark into model parameters using a parameter regularizer. Our approach does not hurt the performance of networks into which a watermark is embedded. Finally, we perform comprehensive experiments to reveal the potential of watermarking to deep neural networks as a basis of this new problem. We show that our framework can embed a watermark in the situations of training a network from scratch, fine-tuning, and distilling without hurting the performance of a deep neural network. The embedded watermark does not disappear even after fine-tuning or parameter pruning; the watermark completely remains even after removing 65% of parameters were pruned. The implementation of this research is: https://github.com/yu4u/dnn-watermark
Abstract:In this paper, we propose a stand-alone mobile visual search system based on binary features and the bag-of-visual words framework. The contribution of this study is three-fold: (1) We propose an adaptive substring extraction method that adaptively extracts informative bits from the original binary vector and stores them in the inverted index. These substrings are used to refine visual word-based matching. (2) A modified local NBNN scoring method is proposed in the context of image retrieval, which considers the density of binary features in scoring each feature matching. (3) In order to suppress false positives, we introduce a convexity check step that imposes a convexity constraint on the configuration of a transformed reference image. The proposed system improves retrieval accuracy by 11% compared with a conventional method without increasing the database size. Furthermore, our system with the convexity check does not lead to false positive results.
Abstract:Recently, the Fisher vector representation of local features has attracted much attention because of its effectiveness in both image classification and image retrieval. Another trend in the area of image retrieval is the use of binary features such as ORB, FREAK, and BRISK. Considering the significant performance improvement for accuracy in both image classification and retrieval by the Fisher vector of continuous feature descriptors, if the Fisher vector were also to be applied to binary features, we would receive similar benefits in binary feature based image retrieval and classification. In this paper, we derive the closed-form approximation of the Fisher vector of binary features modeled by the Bernoulli mixture model. We also propose accelerating the Fisher vector by using the approximate value of posterior probability. Experiments show that the Fisher vector representation significantly improves the accuracy of image retrieval compared with a bag of binary words approach.
Abstract:Image representations derived from pre-trained Convolutional Neural Networks (CNNs) have become the new state of the art in computer vision tasks such as instance retrieval. This work explores the suitability for instance retrieval of image- and region-wise representations pooled from an object detection CNN such as Faster R-CNN. We take advantage of the object proposals learned by a Region Proposal Network (RPN) and their associated CNN features to build an instance search pipeline composed of a first filtering stage followed by a spatial reranking. We further investigate the suitability of Faster R-CNN features when the network is fine-tuned for the same objects one wants to retrieve. We assess the performance of our proposed system with the Oxford Buildings 5k, Paris Buildings 6k and a subset of TRECVid Instance Search 2013, achieving competitive results.