Abstract:The brain is a highly complex organ that manages many important tasks, including movement, memory and thinking. Brain-related conditions, like tumors and degenerative disorders, can be hard to diagnose and treat. Magnetic Resonance Imaging (MRI) serves as a key tool for identifying these conditions, offering high-resolution images of brain structures. Despite this, interpreting MRI scans can be complicated. This study tackles this challenge by conducting a comparative analysis of Vision Transformer (ViT) and Transfer Learning (TL) models such as VGG16, VGG19, Resnet50V2, MobilenetV2 for classifying brain diseases using MRI data from Bangladesh based dataset. ViT, known for their ability to capture global relationships in images, are particularly effective for medical imaging tasks. Transfer learning helps to mitigate data constraints by fine-tuning pre-trained models. Furthermore, Explainable AI (XAI) methods such as GradCAM, GradCAM++, LayerCAM, ScoreCAM, and Faster-ScoreCAM are employed to interpret model predictions. The results demonstrate that ViT surpasses transfer learning models, achieving a classification accuracy of 94.39%. The integration of XAI methods enhances model transparency, offering crucial insights to aid medical professionals in diagnosing brain diseases with greater precision.
Abstract:Leaf diseases are harmful conditions that affect the health, appearance and productivity of plants, leading to significant plant loss and negatively impacting farmers' livelihoods. These diseases cause visible symptoms such as lesions, color changes, and texture variations, making it difficult for farmers to manage plant health, especially in large or remote farms where expert knowledge is limited. The main motivation of this study is to provide an efficient and accessible solution for identifying plant leaf diseases in Bangladesh, where agriculture plays a critical role in food security. The objective of our research is to classify 21 distinct leaf diseases across six plants using deep learning models, improving disease detection accuracy while reducing the need for expert involvement. Deep Learning (DL) techniques, including CNN and Transfer Learning (TL) models like VGG16, VGG19, MobileNetV2, InceptionV3, ResNet50V2 and Xception are used. VGG19 and Xception achieve the highest accuracies, with 98.90% and 98.66% respectively. Additionally, Explainable AI (XAI) techniques such as GradCAM, GradCAM++, LayerCAM, ScoreCAM and FasterScoreCAM are used to enhance transparency by highlighting the regions of the models focused on during disease classification. This transparency ensures that farmers can understand the model's predictions and take necessary action. This approach not only improves disease management but also supports farmers in making informed decisions, leading to better plant protection and increased agricultural productivity.
Abstract:Pumpkin leaf diseases are significant threats to agricultural productivity, requiring a timely and precise diagnosis for effective management. Traditional identification methods are laborious and susceptible to human error, emphasizing the necessity for automated solutions. This study employs on the "Pumpkin Leaf Disease Dataset", that comprises of 2000 high-resolution images separated into five categories. Downy mildew, powdery mildew, mosaic disease, bacterial leaf spot, and healthy leaves. The dataset was rigorously assembled from several agricultural fields to ensure a strong representation for model training. We explored many proficient deep learning architectures, including DenseNet201, DenseNet121, DenseNet169, Xception, ResNet50, ResNet101 and InceptionResNetV2, and observed that ResNet50 performed most effectively, with an accuracy of 90.5% and comparable precision, recall, and F1-Score. We used Explainable AI (XAI) approaches like Grad-CAM, Grad-CAM++, Score-CAM, and Layer-CAM to provide meaningful representations of model decision-making processes, which improved understanding and trust in automated disease diagnostics. These findings demonstrate ResNet50's potential to revolutionize pumpkin leaf disease detection, allowing for earlier and more accurate treatments.