Abstract:Safety-critical learning requires policies that improve performance without leaving the safe operating regime. We study constrained policy learning where model parameters must satisfy unknown, rollout-based safety constraints. We propose SCPO, a sampling-based weight-space projection method that enforces safety directly in parameter space without requiring gradient access to the constraint functions. Our approach constructs a local safe region by combining trajectory rollouts with smoothness bounds that relate parameter changes to shifts in safety metrics. Each gradient update is then projected via a convex SOCP, producing a safe first-order step. We establish a safe-by-induction guarantee: starting from any safe initialization, all intermediate policies remain safe given feasible projections. In constrained control settings with a stabilizing backup policy, our approach further ensures closed-loop stability and enables safe adaptation beyond the conservative backup. On regression with harmful supervision and a constrained double-integrator task with malicious expert, our approach consistently rejects unsafe updates, maintains feasibility throughout training, and achieves meaningful primal objective improvement.
Abstract:Guaranteeing constraint satisfaction is challenging in imitation learning (IL), particularly in tasks that require operating near a system's handling limits. Traditional IL methods often struggle to enforce constraints, leading to suboptimal performance in high-precision tasks. In this paper, we present a simple approach to incorporating safety into the IL objective. Through simulations, we empirically validate our approach on an autonomous racing task with both full-state and image feedback, demonstrating improved constraint satisfaction and greater consistency in task performance compared to a baseline method.