Abstract:We demonstrate the efficacy of symbolic regression (SR) to probe models of particle physics Beyond the Standard Model (BSM), by considering the so-called Constrained Minimal Supersymmetric Standard Model (CMSSM). Like many incarnations of BSM physics this model has a number (four) of arbitrary parameters, which determine the experimental signals, and cosmological observables such as the dark matter relic density. We show that analysis of the phenomenology can be greatly accelerated by using symbolic expressions derived for the observables in terms of the input parameters. Here we focus on the Higgs mass, the cold dark matter relic density, and the contribution to the anomalous magnetic moment of the muon. We find that SR can produce remarkably accurate expressions. Using them we make global fits to derive the posterior probability densities of the CMSSM input parameters which are in good agreement with those performed using conventional methods. Moreover, we demonstrate a major advantage of SR which is the ability to make fits using differentiable methods rather than sampling methods. We also compare the method with neural network (NN) regression. SR produces more globally robust results, while NNs require data that is focussed on the promising regions in order to be equally performant.



Abstract:We propose symbolic regression as a powerful tool for studying Beyond the Standard Model physics. As a benchmark model, we consider the so-called Constrained Minimal Supersymmetric Standard Model, which has a four-dimensional parameter space defined at the GUT scale. We provide a set of analytical expressions that reproduce three low-energy observables of interest in terms of the parameters of the theory: the Higgs mass, the contribution to the anomalous magnetic moment of the muon, and the cold dark matter relic density. To demonstrate the power of the approach, we employ the symbolic expressions in a global fits analysis to derive the posterior probability densities of the parameters, which are obtained extremely rapidly in comparison with conventional methods.