Abstract:An alternative data-driven modeling approach has been proposed and employed to gain fundamental insights into robot motion interaction with granular terrain at certain length scales. The approach is based on an integration of dimension reduction (Sequentially Truncated Higher-Order Singular Value Decomposition), surrogate modeling (Gaussian Process), and data assimilation techniques (Reduced Order Particle Filter). This approach can be used online and is based on offline data, obtained from the offline collection of high-fidelity simulation data and a set of sparse experimental data. The results have shown that orders of magnitude reduction in computational time can be obtained from the proposed data-driven modeling approach compared with physics-based high-fidelity simulations. With only simulation data as input, the data-driven prediction technique can generate predictions that have comparable accuracy as simulations. With both simulation data and sparse physical experimental measurement as input, the data-driven approach with its embedded data assimilation techniques has the potential in outperforming only high-fidelity simulations for the long-horizon predictions. In addition, it is demonstrated that the data-driven modeling approach can also reproduce the scaling relationship recovered by physics-based simulations for maximum resistive forces, which may indicate its general predictability beyond a case-by-case basis. The results are expected to help robot navigation and exploration in unknown and complex terrains during both online and offline phases.
Abstract:We present a centralized auction algorithm to solve the Multi-Depot Rural Postman Problem with Rechargeable and Reusable Vehicles (MD-RPP-RRV), focusing on rescheduling arc routing after vehicle failures. The problem involves finding heuristically obtained best feasible routes for multiple rechargeable and reusable vehicles with capacity constraints capable of performing multiple trips from multiple depots, with the possibility of vehicle failures. Our algorithm auctions the failed trips to active (non-failed) vehicles through local auctioning, modifying initial routes to handle dynamic vehicle failures efficiently. When a failure occurs, the algorithm searches for the best active vehicle to perform the failed trip and inserts the trip into that vehicle's route, which avoids a complete rescheduling and reduces the computational effort. We compare the algorithm's solutions against offline optimal solutions obtained from solving a Mixed Integer Linear Programming (MILP) formulation using the Gurobi solver; this formulation assumes that perfect information about the vehicle failures and failure times is given. The results demonstrate that the centralized auction algorithm produces solutions that are, in some cases, near optimal; moreover, the execution time for the proposed approach is much more consistent and is, for some instances, orders of magnitude less than the execution time of the Gurobi solver. The theoretical analysis provides an upper bound for the competitive ratio and computational complexity of our algorithm, offering a formal performance guarantee in dynamic failure scenarios.