Abstract:Event cameras offer significant advantages for edge robotics applications due to their asynchronous operation and sparse, event-driven output, making them well-suited for tasks requiring fast and efficient closed-loop control, such as gesture-based human-robot interaction. Despite this potential, existing event processing solutions remain limited, often lacking complete end-to-end implementations, exhibiting high latency, and insufficiently exploiting event data sparsity. In this paper, we present HOMI, an ultra-low latency, end-to-end edge AI platform comprising a Prophesee IMX636 event sensor chip with an Xilinx Zynq UltraScale+MPSoC FPGA chip, deploying an in-house developed AI accelerator. We have developed hardware-optimized pre-processing pipelines supporting both constant-time and constant-event modes for histogram accumulation, linear and exponential time surfaces. Our general-purpose implementation caters to both accuracy-driven and low-latency applications. HOMI achieves 94% accuracy on the DVS Gesture dataset as a use case when configured for high accuracy operation and provides a throughput of 1000 fps for low-latency configuration. The hardware-optimised pipeline maintains a compact memory footprint and utilises only 33% of the available LUT resources on the FPGA, leaving ample headroom for further latency reduction, model parallelisation, multi-task deployments, or integration of more complex architectures.
Abstract:Measuring a qubit is a fundamental yet error prone operation in quantum computing. These errors can stem from various sources such as crosstalk, spontaneous state-transitions, and excitation caused by the readout pulse. In this work, we utilize an integrated approach to deploy neural networks (NN) on to field programmable gate arrays (FPGA). We demonstrate that it is practical to design and implement a fully connected neural network accelerator for frequency-multiplexed readout balancing computational complexity with low latency requirements without significant loss in accuracy. The neural network is implemented by quantization of weights, activation functions, and inputs. The hardware accelerator performs frequency-multiplexed readout of 5 superconducting qubits in less than 50 ns on RFSoC ZCU111 FPGA which is first of its kind in the literature. These modules can be implemented and integrated in existing Quantum control and readout platforms using a RFSoC ZCU111 ready for experimental deployment.