Abstract:Mental representation, characterized by structured internal models mirroring external environments, is fundamental to advanced cognition but remains challenging to investigate empirically. Existing theory hypothesizes that second-order learning -- learning mechanisms that adapt first-order learning (i.e., learning about the task/domain) -- promotes the emergence of such environment-cognition isomorphism. In this paper, we empirically validate this hypothesis by proposing a hierarchical architecture comprising a Graph Convolutional Network (GCN) as a first-order learner and an MLP controller as a second-order learner. The GCN directly maps node-level features to predictions of optimal navigation paths, while the MLP dynamically adapts the GCN's parameters when confronting structurally novel maze environments. We demonstrate that second-order learning is particularly effective when the cognitive system develops an internal mental map structurally isomorphic to the environment. Quantitative and qualitative results highlight significant performance improvements and robust generalization on unseen maze tasks, providing empirical support for the pivotal role of structured mental representations in maximizing the effectiveness of second-order learning.
Abstract:We introduce a novel Theory of Mind (ToM) framework inspired by dual-process theories from cognitive science, integrating a fast, habitual graph-based reasoning system (System 1), implemented via graph convolutional networks (GCNs), and a slower, context-sensitive meta-adaptive learning system (System 2), driven by meta-learning techniques. Our model dynamically balances intuitive and deliberative reasoning through a learned context gate mechanism. We validate our architecture on canonical false-belief tasks and systematically explore its capacity to replicate hallmark cognitive biases associated with dual-process theory, including anchoring, cognitive-load fatigue, framing effects, and priming effects. Experimental results demonstrate that our dual-process approach closely mirrors human adaptive behavior, achieves robust generalization to unseen contexts, and elucidates cognitive mechanisms underlying reasoning biases. This work bridges artificial intelligence and cognitive theory, paving the way for AI systems exhibiting nuanced, human-like social cognition and adaptive decision-making capabilities.