



Abstract:Distributed representations of words and paragraphs as semantic embeddings in high dimensional data are used across a number of Natural Language Understanding tasks such as retrieval, translation, and classification. In this work, we propose "Class Vectors" - a framework for learning a vector per class in the same embedding space as the word and paragraph embeddings. Similarity between these class vectors and word vectors are used as features to classify a document to a class. In experiment on several sentiment analysis tasks such as Yelp reviews and Amazon electronic product reviews, class vectors have shown better or comparable results in classification while learning very meaningful class embeddings.




Abstract:A cellular automata (CA) configuration is constructed that exhibits emergent failover. The configuration is based on standard Game of Life rules. Gliders and glider-guns form the core messaging structure in the configuration. The blinker is represented as the basic computational unit, and it is shown how it can be recreated in case of a failure. Stateless failover using primary-backup mechanism is demonstrated. The details of the CA components used in the configuration and its working are described, and a simulation of the complete configuration is also presented.