Abstract:Healthcare applications are inherently multimodal, benefiting greatly from the integration of diverse data sources. However, the modalities available in clinical settings can vary across different locations and patients. A key area that stands to gain from multimodal integration is breast cancer molecular subtyping, an important clinical task that can facilitate personalized treatment and improve patient prognosis. In this work, we propose a scalable and loosely-coupled multimodal framework that seamlessly integrates data from various modalities, including copy number variation (CNV), clinical records, and histopathology images, to enhance breast cancer subtyping. While our primary focus is on breast cancer, our framework is designed to easily accommodate additional modalities, offering the flexibility to scale up or down with minimal overhead without requiring re-training of existing modalities, making it applicable to other types of cancers as well. We introduce a dual-based representation for whole slide images (WSIs), combining traditional image-based and graph-based WSI representations. This novel dual approach results in significant performance improvements. Moreover, we present a new multimodal fusion strategy, demonstrating its ability to enhance performance across a range of multimodal conditions. Our comprehensive results show that integrating our dual-based WSI representation with CNV and clinical health records, along with our pipeline and fusion strategy, outperforms state-of-the-art methods in breast cancer subtyping.
Abstract:Despite the transformative impact of deep learning on text, audio, and image datasets, its dominance in tabular data, especially in the medical domain where data are often scarce, remains less clear. In this paper, we propose X2Graph, a novel deep learning method that achieves strong performance on small biological tabular datasets. X2Graph leverages external knowledge about the relationships between table columns, such as gene interactions, to convert each sample into a graph structure. This transformation enables the application of standard message passing algorithms for graph modeling. Our X2Graph method demonstrates superior performance compared to existing tree-based and deep learning methods across three cancer subtyping datasets.
Abstract:We aim to develop a fundamental understanding of modality collapse, a recently observed empirical phenomenon wherein models trained for multimodal fusion tend to rely only on a subset of the modalities, ignoring the rest. We show that modality collapse happens when noisy features from one modality are entangled, via a shared set of neurons in the fusion head, with predictive features from another, effectively masking out positive contributions from the predictive features of the former modality and leading to its collapse. We further prove that cross-modal knowledge distillation implicitly disentangles such representations by freeing up rank bottlenecks in the student encoder, denoising the fusion-head outputs without negatively impacting the predictive features from either modality. Based on the above findings, we propose an algorithm that prevents modality collapse through explicit basis reallocation, with applications in dealing with missing modalities. Extensive experiments on multiple multimodal benchmarks validate our theoretical claims. Project page: https://abhrac.github.io/mmcollapse/.
Abstract:Invariance learning algorithms that conditionally filter out domain-specific random variables as distractors, do so based only on the data semantics, and not the target domain under evaluation. We show that a provably optimal and sample-efficient way of learning conditional invariances is by relaxing the invariance criterion to be non-commutatively directed towards the target domain. Under domain asymmetry, i.e., when the target domain contains semantically relevant information absent in the source, the risk of the encoder $\varphi^*$ that is optimal on average across domains is strictly lower-bounded by the risk of the target-specific optimal encoder $\Phi^*_\tau$. We prove that non-commutativity steers the optimization towards $\Phi^*_\tau$ instead of $\varphi^*$, bringing the $\mathcal{H}$-divergence between domains down to zero, leading to a stricter bound on the target risk. Both our theory and experiments demonstrate that non-commutative invariance (NCI) can leverage source domain samples to meet the sample complexity needs of learning $\Phi^*_\tau$, surpassing SOTA invariance learning algorithms for domain adaptation, at times by over $2\%$, approaching the performance of an oracle. Implementation is available at https://github.com/abhrac/nci.