Abstract:Capturing spatial context at multiple scales is crucial for deep learning-based sea ice segmentation. However, the optimal specification of spatial context based on observation resolution and task characteristics remains underexplored. This study investigates the impact of spatial context on the segmentation of sea ice concentration, stage of development, and floe size using a multi-task segmentation model. We implement Atrous Spatial Pyramid Pooling with varying atrous rates to systematically control the receptive field size of convolutional operations, and to capture multi-scale contextual information. We explore the interactions between spatial context and feature resolution for different sea ice properties and examine how spatial context influences segmentation performance across different input feature combinations from Sentinel-1 SAR and Advanced Microwave Radiometer-2 (AMSR2) for multi-task mapping. Using Gradient-weighted Class Activation Mapping, we visualize how atrous rates influence model decisions. Our findings indicate that smaller receptive fields excel for high-resolution Sentinel-1 data, while medium receptive fields yield better performances for stage of development segmentation and larger receptive fields often lead to diminished performances. The fusion of SAR and AMSR2 enhances segmentation across all tasks. We highlight the value of lower-resolution 18.7 and 36.5 GHz AMSR2 channels in sea ice mapping. These findings highlight the importance of selecting appropriate spatial context based on observation resolution and target properties in sea ice mapping. By systematically analyzing receptive field effects in a multi-task setting, our study provides insights for optimizing deep learning models in geospatial applications.