Abstract:Although large language models (LLMs) have demonstrated impressive reasoning capabilities across general domains, their effectiveness in real-world clinical practice remains limited. This is likely due to their insufficient exposure to real-world clinical data during training, as such data is typically not included due to privacy concerns. To address this, we propose enhancing the clinical reasoning capabilities of LLMs by leveraging real-world clinical data. We constructed reasoning-intensive questions from a nationwide sepsis registry and fine-tuned Phi-4 on these questions using reinforcement learning, resulting in C-Reason. C-Reason exhibited strong clinical reasoning capabilities on the in-domain test set, as evidenced by both quantitative metrics and expert evaluations. Furthermore, its enhanced reasoning capabilities generalized to a sepsis dataset involving different tasks and patient cohorts, an open-ended consultations on antibiotics use task, and other diseases. Future research should focus on training LLMs with large-scale, multi-disease clinical datasets to develop more powerful, general-purpose clinical reasoning models.
Abstract:In this study, we present a speech corpus of patients with chronic kidney disease (CKD) that will be used for research on pathological voice analysis, automatic illness identification, and severity prediction. This paper introduces the steps involved in creating this corpus, including the choice of speech-related parameters and speech lists as well as the recording technique. The speakers in this corpus, 289 CKD patients with varying degrees of severity who were categorized based on estimated glomerular filtration rate (eGFR), delivered sustained vowels, sentence, and paragraph stimuli. This study compared and analyzed the voice characteristics of CKD patients with those of the control group; the results revealed differences in voice quality, phoneme-level pronunciation, prosody, glottal source, and aerodynamic parameters.