Abstract:Recent advances in open-vocabulary object detection models will enable Automatic Target Recognition systems to be sustainable and repurposed by non-technical end-users for a variety of applications or missions. New, and potentially nuanced, classes can be defined with natural language text descriptions in the field, immediately before runtime, without needing to retrain the model. We present an approach for improving non-technical users' natural language text descriptions of their desired targets of interest, using a combination of analysis techniques on the text embeddings, and proper combinations of embeddings for contrastive examples. We quantify the improvement that our feedback mechanism provides by demonstrating performance with multiple publicly-available open-vocabulary object detection models.
Abstract:We present a novel Automatic Target Recognition (ATR) system using open-vocabulary object detection and classification models. A primary advantage of this approach is that target classes can be defined just before runtime by a non-technical end user, using either a few natural language text descriptions of the target, or a few image exemplars, or both. Nuances in the desired targets can be expressed in natural language, which is useful for unique targets with little or no training data. We also implemented a novel combination of several techniques to improve performance, such as leveraging the additional information in the sequence of overlapping frames to perform tubelet identification (i.e., sequential bounding box matching), bounding box re-scoring, and tubelet linking. Additionally, we developed a technique to visualize the aggregate output of many overlapping frames as a mosaic of the area scanned during the aerial surveillance or reconnaissance, and a kernel density estimate (or heatmap) of the detected targets. We initially applied this ATR system to the use case of detecting and clearing unexploded ordinance on airfield runways and we are currently extending our research to other real-world applications.