Abstract:Multi-agent systems utilizing large language models often assign authoritative roles to improve performance, yet the impact of authority bias on agent interactions remains underexplored. We present the first systematic analysis of role-based authority bias in free-form multi-agent evaluation using ChatEval. Applying French and Raven's power-based theory, we classify authoritative roles into legitimate, referent, and expert types and analyze their influence across 12-turn conversations. Experiments with GPT-4o and DeepSeek R1 reveal that Expert and Referent power roles exert stronger influence than Legitimate power roles. Crucially, authority bias emerges not through active conformity by general agents, but through authoritative roles consistently maintaining their positions while general agents demonstrate flexibility. Furthermore, authority influence requires clear position statements, as neutral responses fail to generate bias. These findings provide key insights for designing multi-agent frameworks with asymmetric interaction patterns.




Abstract:Understanding the relation between anatomy andgait is key to successful predictive gait simulation. Inthis paper, we present Generative GaitNet, which isa novel network architecture based on deep reinforce-ment learning for controlling a comprehensive, full-body, musculoskeletal model with 304 Hill-type mus-culotendons. The Generative Gait is a pre-trained, in-tegrated system of artificial neural networks learnedin a 618-dimensional continuous domain of anatomyconditions (e.g., mass distribution, body proportion,bone deformity, and muscle deficits) and gait condi-tions (e.g., stride and cadence). The pre-trained Gait-Net takes anatomy and gait conditions as input andgenerates a series of gait cycles appropriate to theconditions through physics-based simulation. We willdemonstrate the efficacy and expressive power of Gen-erative GaitNet to generate a variety of healthy andpathologic human gaits in real-time physics-based sim-ulation.