Abstract:Algorithmic pricing is increasingly shaping market competition, raising concerns about its potential to compromise competitive dynamics. While prior work has shown that reinforcement learning (RL)-based pricing algorithms can lead to tacit collusion, less attention has been given to the role of macroeconomic factors in shaping these dynamics. This study examines the role of inflation in influencing algorithmic collusion within competitive markets. By incorporating inflation shocks into a RL-based pricing model, we analyze whether agents adapt their strategies to sustain supra-competitive profits. Our findings indicate that inflation reduces market competitiveness by fostering implicit coordination among agents, even without direct collusion. However, despite achieving sustained higher profitability, agents fail to develop robust punishment mechanisms to deter deviations from equilibrium strategies. The results suggest that inflation amplifies non-competitive dynamics in algorithmic pricing, emphasizing the need for regulatory oversight in markets where AI-driven pricing is prevalent.