Abstract:The global prevalence of diabetes, particularly type 2 diabetes mellitus (T2DM), is rapidly increasing, posing significant health and economic challenges. T2DM not only disrupts blood glucose regulation but also damages vital organs such as the heart, kidneys, eyes, nerves, and blood vessels, leading to substantial morbidity and mortality. In the US alone, the economic burden of diagnosed diabetes exceeded \$400 billion in 2022. Early detection of individuals at risk is critical to mitigating these impacts. While machine learning approaches for T2DM prediction are increasingly adopted, many rely on supervised learning, which is often limited by the lack of confirmed negative cases. To address this limitation, we propose a novel unsupervised framework that integrates Non-negative Matrix Factorization (NMF) with statistical techniques to identify individuals at risk of developing T2DM. Our method identifies latent patterns of multimorbidity and polypharmacy among diagnosed T2DM patients and applies these patterns to estimate the T2DM risk in undiagnosed individuals. By leveraging data-driven insights from comorbidity and medication usage, our approach provides an interpretable and scalable solution that can assist healthcare providers in implementing timely interventions, ultimately improving patient outcomes and potentially reducing the future health and economic burden of T2DM.
Abstract:Translational research requires data at multiple scales of biological organization. Advancements in sequencing and multi-omics technologies have increased the availability of these data but researchers face significant integration challenges. Knowledge graphs (KGs) are used to model complex phenomena, and methods exist to automatically construct them. However, tackling complex biomedical integration problems requires flexibility in the way knowledge is modeled. Moreover, existing KG construction methods provide robust tooling at the cost of fixed or limited choices among knowledge representation models. PheKnowLator (Phenotype Knowledge Translator) is a semantic ecosystem for automating the FAIR (Findable, Accessible, Interoperable, and Reusable) construction of ontologically grounded KGs with fully customizable knowledge representation. The ecosystem includes KG construction resources (e.g., data preparation APIs), analysis tools (e.g., SPARQL endpoints and abstraction algorithms), and benchmarks (e.g., prebuilt KGs and embeddings). We evaluate the ecosystem by surveying open-source KG construction methods and analyzing its computational performance when constructing 12 large-scale KGs. With flexible knowledge representation, PheKnowLator enables fully customizable KGs without compromising performance or usability.