Abstract:Industries such as banking, telecom, and airlines - o6en have large so6ware systems that are several decades old. Many of these systems are written in old programming languages such as COBOL, PL/1, Assembler, etc. In many cases, the documentation is not updated, and those who developed/designed these systems are no longer around. Understanding these systems for either modernization or even regular maintenance has been a challenge. An extensive application may have natural boundaries based on its code dependencies and architecture. There are also other logical boundaries in an enterprise setting driven by business functions, data domains, etc. Due to these complications, the system architects generally plan their modernization across these logical boundaries in parts, thereby adopting an incremental approach for the modernization journey of the entire system. In this work, we present a so6ware system analysis tool that allows a subject ma=er expert (SME) or system architect to analyze a large so6ware system incrementally. We analyze the source code and other artifacts (such as data schema) to create a knowledge graph using a customizable ontology/schema. Entities and relations in our ontology can be defined for any combination of programming languages and platforms. Using this knowledge graph, the analyst can then define logical boundaries around dependent Entities (e.g. Programs, Transactions, Database Tables etc.). Our tool then presents different views showcasing the dependencies from the newly defined boundary to/from the other logical groups of the system. This exercise is repeated interactively to 1) Identify the Entities and groupings of interest for a modernization task and 2) Understand how a change in one part of the system may affect the other parts. To validate the efficacy of our tool, we provide an initial study of our system on two client applications.
Abstract:Recent advances in Large Language Model (LLM) based Generative AI techniques have made it feasible to translate enterprise-level code from legacy languages such as COBOL to modern languages such as Java or Python. While the results of LLM-based automatic transformation are encouraging, the resulting code cannot be trusted to correctly translate the original code, making manual validation of translated Java code from COBOL a necessary but time-consuming and labor-intensive process. In this paper, we share our experience of developing a testing framework for IBM Watsonx Code Assistant for Z (WCA4Z) [5], an industrial tool designed for COBOL to Java translation. The framework automates the process of testing the functional equivalence of the translated Java code against the original COBOL programs in an industry context. Our framework uses symbolic execution to generate unit tests for COBOL, mocking external calls and transforming them into JUnit tests to validate semantic equivalence with translated Java. The results not only help identify and repair any detected discrepancies but also provide feedback to improve the AI model.