Abstract:Non-muscle-invasive bladder cancer (NMIBC) is a relentless challenge in oncology, with recurrence rates soaring as high as 70-80%. Each recurrence triggers a cascade of invasive procedures, lifelong surveillance, and escalating healthcare costs - affecting 460,000 individuals worldwide. However, existing clinical prediction tools remain fundamentally flawed, often overestimating recurrence risk and failing to provide personalized insights for patient management. In this work, we propose an interpretable deep learning framework that integrates vector embeddings and attention mechanisms to improve NMIBC recurrence prediction performance. We incorporate vector embeddings for categorical variables such as smoking status and intravesical treatments, allowing the model to capture complex relationships between patient attributes and recurrence risk. These embeddings provide a richer representation of the data, enabling improved feature interactions and enhancing prediction performance. Our approach not only enhances performance but also provides clinicians with patient-specific insights by highlighting the most influential features contributing to recurrence risk for each patient. Our model achieves accuracy of 70% with tabular data, outperforming conventional statistical methods while providing clinician-friendly patient-level explanations through feature attention. Unlike previous studies, our approach identifies new important factors influencing recurrence, such as surgical duration and hospital stay, which had not been considered in existing NMIBC prediction models.
Abstract:Bladder cancer, the leading urinary tract cancer, is responsible for 15 deaths daily in the UK. This cancer predominantly manifests as non-muscle-invasive bladder cancer (NMIBC), characterised by tumours not yet penetrating the muscle layer of the bladder wall. NMIBC is plagued by a very high recurrence rate of 70-80% and hence the costliest treatments. Current tools for predicting recurrence use scoring systems that overestimate risk and have poor accuracy. Inaccurate and delayed prediction of recurrence significantly elevates the likelihood of mortality. Accurate prediction of recurrence is hence vital for cost-effective management and treatment planning. This is where Machine learning (ML) techniques have emerged as a promising approach for predicting NMIBC recurrence by leveraging molecular and clinical data. This review provides a comprehensive analysis of ML approaches for predicting NMIBC recurrence. Our systematic evaluation demonstrates the potential of diverse ML algorithms and markers, including radiomic, clinical, histopathological, genomic, and biochemical data in enhancing recurrence prediction and personalised patient management. We summarise various prediction tasks, data modalities, and ML models used, highlighting their performance, limitations, and future directions of incorporating cost-effectiveness. Challenges related to generalisability and interpretability of artificial intelligent models are discussed, emphasising the need for collaborative efforts and robust datasets.