Abstract:Powerful machine learning (ML) models are now readily available online, which creates exciting possibilities for users who lack the deep technical expertise or substantial computing resources needed to develop them. On the other hand, this type of open ecosystem comes with many risks. In this paper, we argue that the current ecosystem for open ML models contains significant supply-chain risks, some of which have been exploited already in real attacks. These include an attacker replacing a model with something malicious (e.g., malware), or a model being trained using a vulnerable version of a framework or on restricted or poisoned data. We then explore how Sigstore, a solution designed to bring transparency to open-source software supply chains, can be used to bring transparency to open ML models, in terms of enabling model publishers to sign their models and prove properties about the datasets they use.
Abstract:We often interact with untrusted parties. Prioritization of privacy can limit the effectiveness of these interactions, as achieving certain goals necessitates sharing private data. Traditionally, addressing this challenge has involved either seeking trusted intermediaries or constructing cryptographic protocols that restrict how much data is revealed, such as multi-party computations or zero-knowledge proofs. While significant advances have been made in scaling cryptographic approaches, they remain limited in terms of the size and complexity of applications they can be used for. In this paper, we argue that capable machine learning models can fulfill the role of a trusted third party, thus enabling secure computations for applications that were previously infeasible. In particular, we describe Trusted Capable Model Environments (TCMEs) as an alternative approach for scaling secure computation, where capable machine learning model(s) interact under input/output constraints, with explicit information flow control and explicit statelessness. This approach aims to achieve a balance between privacy and computational efficiency, enabling private inference where classical cryptographic solutions are currently infeasible. We describe a number of use cases that are enabled by TCME, and show that even some simple classic cryptographic problems can already be solved with TCME. Finally, we outline current limitations and discuss the path forward in implementing them.