Abstract:Precise control of neural activity -- modulating target neurons deep in the brain while leaving nearby neurons unaffected -- is an outstanding challenge in neuroscience, generally achieved through invasive techniques. This study investigates the possibility of precisely and noninvasively modulating neural activity in the high-level primate ventral visual stream via perturbations on one's natural visual feed. When tested on macaque inferior temporal (IT) neural populations, we found quantitative agreement between the model-predicted and biologically realized effect: strong modulation concentrated on targeted neural sites. We extended this to demonstrate accurate injection of experimenter-chosen neural population patterns via subtle perturbations applied on the background of typical natural visual feeds. These results highlight that current machine-executable models of the ventral stream can now design noninvasive, visually-delivered, possibly imperceptible neural interventions at the resolution of individual neurons.