Abstract:The rapid adoption of AI-powered applications demands high-performance, scalable, and efficient cloud database solutions, as traditional architectures often struggle with AI-driven workloads requiring real-time data access, vector search, and low-latency queries. This paper explores how cloud-native databases enable AI-driven applications by leveraging purpose-built technologies such as vector databases (pgvector), graph databases (AWS Neptune), NoSQL stores (Amazon DocumentDB, DynamoDB), and relational cloud databases (Aurora MySQL and PostgreSQL). It presents architectural patterns for integrating AI workloads with cloud databases, including Retrieval-Augmented Generation (RAG) [1] with LLMs, real-time data pipelines, AI-driven query optimization, and embeddings-based search. Performance benchmarks, scalability considerations, and cost-efficient strategies are evaluated to guide the design of AI-enabled applications. Real-world case studies from industries such as healthcare, finance, and customer experience illustrate how enterprises utilize cloud databases to enhance AI capabilities while ensuring security, governance, and compliance with enterprise and regulatory standards. By providing a comprehensive analysis of AI and cloud database integration, this paper serves as a practical guide for researchers, architects, and enterprises to build next-generation AI applications that optimize performance, scalability, and cost efficiency in cloud environments.
Abstract:Generative AI (GenAI) is transforming industries by enabling intelligent content generation, automation, and decision-making. However, the effectiveness of GenAI applications depends significantly on efficient data storage, retrieval, and contextual augmentation. This paper explores the critical role of databases in GenAI workflows, emphasizing the importance of choosing the right database architecture to optimize performance, accuracy, and scalability. It categorizes database roles into conversational context (key-value/document databases), situational context (relational databases/data lakehouses), and semantic context (vector databases) each serving a distinct function in enriching AI-generated responses. Additionally, the paper highlights real-time query processing, vector search for semantic retrieval, and the impact of database selection on model efficiency and scalability. By leveraging a multi-database approach, GenAI applications can achieve more context-aware, personalized, and high-performing AI-driven solutions.