Abstract:This research investigates the use of machine learning methods to forecast students' academic performance in a school setting. Students' data with behavioral, academic, and demographic details were used in implementations with standard classical machine learning models including multi-layer perceptron classifier (MLPC). MLPC obtained 86.46% maximum accuracy for test set across all implementations. Under 10-fold cross validation, MLPC obtained 79.58% average accuracy for test set while for train set, it was 99.65%. MLP's better performance over other machine learning models strongly suggest the potential use of neural networks as data-efficient models. Feature selection approach played a crucial role in improving the performance and multiple evaluation approaches were used in order to compare with existing literature. Explainable machine learning methods were utilized to demystify the black box models and to validate the feature selection approach.
Abstract:We present a graph convolutional network with 2D pose estimation for the first time on child action recognition task achieving on par results with an RGB modality based model on a novel benchmark dataset containing unconstrained environment based videos.
Abstract:This paper presents an implementation on child activity recognition (CAR) with a graph convolution network (GCN) based deep learning model since prior implementations in this domain have been dominated by CNN, LSTM and other methods despite the superior performance of GCN. To the best of our knowledge, we are the first to use a GCN model in child activity recognition domain. In overcoming the challenges of having small size publicly available child action datasets, several learning methods such as feature extraction, fine-tuning and curriculum learning were implemented to improve the model performance. Inspired by the contradicting claims made on the use of transfer learning in CAR, we conducted a detailed implementation and analysis on transfer learning together with a study on negative transfer learning effect on CAR as it hasn't been addressed previously. As the principal contribution, we were able to develop a ST-GCN based CAR model which, despite the small size of the dataset, obtained around 50% accuracy on vanilla implementations. With feature extraction and fine-tuning methods, accuracy was improved by 20%-30% with the highest accuracy being 82.24%. Furthermore, the results provided on activity datasets empirically demonstrate that with careful selection of pre-train model datasets through methods such as curriculum learning could enhance the accuracy levels. Finally, we provide preliminary evidence on possible frame rate effect on the accuracy of CAR models, a direction future research can explore.