Abstract:Vision language models (VLMs) are AI systems paired with both language and vision encoders to process multimodal input. They are capable of performing complex semantic tasks such as automatic captioning, but it remains an open question about how well they comprehend the visuospatial properties of scenes depicted in the images they process. We argue that descriptions of virtual objects -- objects that are not visually represented in an image -- can help test scene comprehension in these AI systems. For example, an image that depicts a person standing under a tree can be paired with the following prompt: imagine that a kite is stuck in the tree. VLMs that comprehend the scene should update their representations and reason sensibly about the spatial relations between all three objects. We describe systematic evaluations of state-of-the-art VLMs and show that their ability to process virtual objects is inadequate.
Abstract:Vision language models (VLMs) are designed to extract relevant visuospatial information from images. Some research suggests that VLMs can exhibit humanlike scene understanding, while other investigations reveal difficulties in their ability to process relational information. To achieve widespread applicability, VLMs must perform reliably, yielding comparable competence across a wide variety of related tasks. We sought to test how reliable these architectures are at engaging in trivial spatial cognition, e.g., recognizing whether one object is left of another in an uncluttered scene. We developed a benchmark dataset -- TableTest -- whose images depict 3D scenes of objects arranged on a table, and used it to evaluate state-of-the-art VLMs. Results show that performance could be degraded by minor variations of prompts that use logically equivalent descriptions. These analyses suggest limitations in how VLMs may reason about spatial relations in real-world applications. They also reveal novel opportunities for bolstering image caption corpora for more efficient training and testing.