Abstract:Caribou across the Arctic has declined in recent decades, motivating scalable and accurate monitoring approaches to guide evidence-based conservation actions and policy decisions. Manual interpretation from this imagery is labor-intensive and error-prone, underscoring the need for automatic and reliable detection across varying scenes. Yet, such automatic detection is challenging due to severe background heterogeneity, dominant empty terrain (class imbalance), small or occluded targets, and wide variation in density and scale. To make the detection model (HerdNet) more robust to these challenges, a weakly supervised patch-level pretraining based on a detection network's architecture is proposed. The detection dataset includes five caribou herds distributed across Alaska. By learning from empty vs. non-empty labels in this dataset, the approach produces early weakly supervised knowledge for enhanced detection compared to HerdNet, which is initialized from generic weights. Accordingly, the patch-based pretrain network attained high accuracy on multi-herd imagery (2017) and on an independent year's (2019) test sets (F1: 93.7%/92.6%, respectively), enabling reliable mapping of regions containing animals to facilitate manual counting on large aerial imagery. Transferred to detection, initialization from weakly supervised pretraining yielded consistent gains over ImageNet weights on both positive patches (F1: 92.6%/93.5% vs. 89.3%/88.6%), and full-image counting (F1: 95.5%/93.3% vs. 91.5%/90.4%). Remaining limitations are false positives from animal-like background clutter and false negatives related to low animal density occlusions. Overall, pretraining on coarse labels prior to detection makes it possible to rely on weakly-supervised pretrained weights even when labeled data are limited, achieving results comparable to generic-weight initialization.
Abstract:Accurate population estimates are essential for wildlife management, providing critical insights into species abundance and distribution. Traditional survey methods, including visual aerial counts and GNSS telemetry tracking, are widely used to monitor muskox populations in Arctic regions. These approaches are resource intensive and constrained by logistical challenges. Advances in remote sensing, artificial intelligence, and high resolution aerial imagery offer promising alternatives for wildlife detection. Yet, the effectiveness of deep learning object detection models (ODMs) is often limited by small datasets, making it challenging to train robust ODMs for sparsely distributed species like muskoxen. This study investigates the integration of synthetic imagery (SI) to supplement limited training data and improve muskox detection in zero shot (ZS) and few-shot (FS) settings. We compared a baseline model trained on real imagery with 5 ZS and 5 FS models that incorporated progressively more SI in the training set. For the ZS models, where no real images were included in the training set, adding SI improved detection performance. As more SI were added, performance in precision, recall and F1 score increased, but eventually plateaued, suggesting diminishing returns when SI exceeded 100% of the baseline model training dataset. For FS models, combining real and SI led to better recall and slightly higher overall accuracy compared to using real images alone, though these improvements were not statistically significant. Our findings demonstrate the potential of SI to train accurate ODMs when data is scarce, offering important perspectives for wildlife monitoring by enabling rare or inaccessible species to be monitored and to increase monitoring frequency. This approach could be used to initiate ODMs without real data and refine it as real images are acquired over time.