Abstract:Evaluating the capabilities and risks of foundation models is paramount, yet current methods demand extensive domain expertise, hindering their scalability as these models rapidly evolve. We introduce SKATE: a novel evaluation framework in which large language models (LLMs) compete by generating and solving verifiable tasks for one another. Our core insight is to treat evaluation as a game: models act as both task-setters and solvers, incentivized to create questions which highlight their own strengths while exposing others' weaknesses. SKATE offers several key advantages, balancing scalability, open-endedness, and objectivity. It is fully automated, data-free, and scalable, requiring no human input or domain expertise. By using verifiable tasks rather than LLM judges, scoring is objective. Unlike domain-limited programmatically-generated benchmarks (e.g. chess-playing or spatial reasoning), having LLMs creatively pose challenges enables open-ended and scalable evaluation. As a proof of concept, we introduce LLM-set code-output-prediction (COP) challenges as a verifiable and extensible framework in which to test our approach. Using a TrueSkill-based ranking system, we evaluate six frontier LLMs and find that: (1) weaker models can reliably differentiate and score stronger ones, (2) LLM-based systems are capable of self-preferencing behavior, generating questions that align with their own capabilities, and (3) SKATE automatically surfaces fine-grained capability differences between models. Our findings are an important step towards general, scalable evaluation frameworks which can keep pace with LLM progress.




Abstract:Trustworthy capability evaluations are crucial for ensuring the safety of AI systems, and are becoming a key component of AI regulation. However, the developers of an AI system, or the AI system itself, may have incentives for evaluations to understate the AI's actual capability. These conflicting interests lead to the problem of sandbagging $\unicode{x2013}$ which we define as "strategic underperformance on an evaluation". In this paper we assess sandbagging capabilities in contemporary language models (LMs). We prompt frontier LMs, like GPT-4 and Claude 3 Opus, to selectively underperform on dangerous capability evaluations, while maintaining performance on general (harmless) capability evaluations. Moreover, we find that models can be fine-tuned, on a synthetic dataset, to hide specific capabilities unless given a password. This behaviour generalizes to high-quality, held-out benchmarks such as WMDP. In addition, we show that both frontier and smaller models can be prompted, or password-locked, to target specific scores on a capability evaluation. Even more, we found that a capable password-locked model (Llama 3 70b) is reasonably able to emulate a less capable model (Llama 2 7b). Overall, our results suggest that capability evaluations are vulnerable to sandbagging. This vulnerability decreases the trustworthiness of evaluations, and thereby undermines important safety decisions regarding the development and deployment of advanced AI systems.