Abstract:As Large Language Models (LLMs) become widely accessible, a detailed understanding of their knowledge within specific domains becomes necessary for successful real world use. This is particularly critical in public health, where failure to retrieve relevant, accurate, and current information could significantly impact UK residents. However, currently little is known about LLM knowledge of UK Government public health information. To address this issue, this paper introduces a new benchmark, PubHealthBench, with over 8000 questions for evaluating LLMs' Multiple Choice Question Answering (MCQA) and free form responses to public health queries, created via an automated pipeline. We also release a new dataset of the extracted UK Government public health guidance documents used as source text for PubHealthBench. Assessing 24 LLMs on PubHealthBench we find the latest private LLMs (GPT-4.5, GPT-4.1 and o1) have a high degree of knowledge, achieving >90% in the MCQA setup, and outperform humans with cursory search engine use. However, in the free form setup we see lower performance with no model scoring >75%. Therefore, whilst there are promising signs that state of the art (SOTA) LLMs are an increasingly accurate source of public health information, additional safeguards or tools may still be needed when providing free form responses on public health topics.
Abstract:Advances in Large Language Models (LLMs) have led to significant interest in their potential to support human experts across a range of domains, including public health. In this work we present automated evaluations of LLMs for public health tasks involving the classification and extraction of free text. We combine six externally annotated datasets with seven new internally annotated datasets to evaluate LLMs for processing text related to: health burden, epidemiological risk factors, and public health interventions. We initially evaluate five open-weight LLMs (7-70 billion parameters) across all tasks using zero-shot in-context learning. We find that Llama-3-70B-Instruct is the highest performing model, achieving the best results on 15/17 tasks (using micro-F1 scores). We see significant variation across tasks with all open-weight LLMs scoring below 60% micro-F1 on some challenging tasks, such as Contact Classification, while all LLMs achieve greater than 80% micro-F1 on others, such as GI Illness Classification. For a subset of 12 tasks, we also evaluate GPT-4 and find comparable results to Llama-3-70B-Instruct, which scores equally or outperforms GPT-4 on 6 of the 12 tasks. Overall, based on these initial results we find promising signs that LLMs may be useful tools for public health experts to extract information from a wide variety of free text sources, and support public health surveillance, research, and interventions.