



Abstract:Ensuring robust robotic navigation in dynamic environments is a key challenge, as traditional testing methods often struggle to cover the full spectrum of operational requirements. This paper presents the industrial adoption of Surrealist, a simulation-based test generation framework originally for UAVs, now applied to the ANYmal quadrupedal robot for industrial inspection. Our method uses a search-based algorithm to automatically generate challenging obstacle avoidance scenarios, uncovering failures often missed by manual testing. In a pilot phase, generated test suites revealed critical weaknesses in one experimental algorithm (40.3% success rate) and served as an effective benchmark to prove the superior robustness of another (71.2% success rate). The framework was then integrated into the ANYbotics workflow for a six-month industrial evaluation, where it was used to test five proprietary algorithms. A formal survey confirmed its value, showing it enhances the development process, uncovers critical failures, provides objective benchmarks, and strengthens the overall verification pipeline.




Abstract:Despite the recent developments in obstacle avoidance and other safety features, autonomous Unmanned Aerial Vehicles (UAVs) continue to face safety challenges. No previous work investigated the relationship between the behavioral uncertainty of a UAV and the unsafety of its flight. By quantifying uncertainty, it is possible to develop a predictor for unsafety, which acts as a flight supervisor. We conducted a large-scale empirical investigation of safety violations using PX4-Autopilot, an open-source UAV software platform. Our dataset of over 5,000 simulated flights, created to challenge obstacle avoidance, allowed us to explore the relation between uncertain UAV decisions and safety violations: up to 89% of unsafe UAV states exhibit significant decision uncertainty, and up to 74% of uncertain decisions lead to unsafe states. Based on these findings, we implemented Superialist (Supervising Autonomous Aerial Vehicles), a runtime uncertainty detector based on autoencoders, the state-of-the-art technology for anomaly detection. Superialist achieved high performance in detecting uncertain behaviors with up to 96% precision and 93% recall. Despite the observed performance degradation when using the same approach for predicting unsafety (up to 74% precision and 87% recall), Superialist enabled early prediction of unsafe states up to 50 seconds in advance.