Abstract:The detection of sexism in online content remains an open problem, as harmful language disproportionately affects women and marginalized groups. While automated systems for sexism detection have been developed, they still face two key challenges: data sparsity and the nuanced nature of sexist language. Even in large, well-curated datasets like the Explainable Detection of Online Sexism (EDOS), severe class imbalance hinders model generalization. Additionally, the overlapping and ambiguous boundaries of fine-grained categories introduce substantial annotator disagreement, reflecting the difficulty of interpreting nuanced expressions of sexism. To address these challenges, we propose two prompt-based data augmentation techniques: Definition-based Data Augmentation (DDA), which leverages category-specific definitions to generate semantically-aligned synthetic examples, and Contextual Semantic Expansion (CSE), which targets systematic model errors by enriching examples with task-specific semantic features. To further improve reliability in fine-grained classification, we introduce an ensemble strategy that resolves prediction ties by aggregating complementary perspectives from multiple language models. Our experimental evaluation on the EDOS dataset demonstrates state-of-the-art performance across all tasks, with notable improvements of macro F1 by 1.5 points for binary classification (Task A) and 4.1 points for fine-grained classification (Task C).
Abstract:Detecting toxic language including sexism, harassment and abusive behaviour, remains a critical challenge, particularly in its subtle and context-dependent forms. Existing approaches largely focus on isolated message-level classification, overlooking toxicity that emerges across conversational contexts. To promote and enable future research in this direction, we introduce SafeSpeech, a comprehensive platform for toxic content detection and analysis that bridges message-level and conversation-level insights. The platform integrates fine-tuned classifiers and large language models (LLMs) to enable multi-granularity detection, toxic-aware conversation summarization, and persona profiling. SafeSpeech also incorporates explainability mechanisms, such as perplexity gain analysis, to highlight the linguistic elements driving predictions. Evaluations on benchmark datasets, including EDOS, OffensEval, and HatEval, demonstrate the reproduction of state-of-the-art performance across multiple tasks, including fine-grained sexism detection.